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Abstract

We present Self-Guidance, a simple way to train deep
neural networks via knowledge distillation. The basic idea
is to train sub-network to match the prediction of the full
network, so-called “Self-Guidance”. Under the “teacher-
student” framework, we construct both teacher and student
within the same target network. Student network is the sub-
networks that randomly skip some portions of the full net-
work. The teacher network is the full network, can be con-
sidered as the ensemble of all possible student networks.
The training process is performed in a closed-loop: (1) For-
ward prediction contains two passes that generate student
and teacher predictions. (2) Backward distillation allows
knowledge transfer from the teacher back to students. Com-
prehensive evaluations show that our approach improves
the generalization ability of deep neural networks to a sig-
nificant margin. The results prove our superior perfor-
mance in both image classification on CIFAR10, CIFAR100,
and facial expression recognition on FER-2013 and RAF.

1. Introduction

Deep neural networks have achieved great success in
computer vision tasks such as image classification [27, 59,
56], object detection [44, 39, 4]. But deep neural networks
are often over-parameterized, which makes it not suitable
for deployment, and easily suffering from over-fitting. To
address this issue, one popular paradigm is Knowledge Dis-
tillation (KD), aiming at training small and generalizable
models. The general idea is to transfer knowledge from
a teacher (large) model to a student (small) model, where
the student is trained to match the output of the teacher
[21, 40, 58]. However, classical knowledge distillation
[21] relies on a pre-trained teacher, which might not al-
ways be available in practice. To solve this problem, online
[41, 63, 65, 5] and self -distillation [13, 54, 62, 57] meth-
ods are proposed using different strategies. Self -distillation
approaches [13, 54, 62, 57] typically take advantage of the

model generations during the training trajectory [13, 54] or
the intermediate flow within the network [62]. However,
many approaches on this line come with a complex work-
flow or architecture design.

Online distillation [63, 65, 5], on the other hand, intends
to build a strong teacher role by a group of (student) peers,
which are typically constructed via a multi-branch archi-
tecture. However, the multi-branch architecture design has
drawbacks: First, the number of branches (students) would
be limited subject to the available storage. This is a storage-
heavy consumption approach for training. Second, and
more importantly, due to the limited number of branches,
the model would not have sufficient power to cover a large
degree of uncertainty/variety in the solution space.

We aim for a storage-efficient training scheme while
maintaining competitive performance. To create student
models without sourcing a multi-branch architecture, we
propose to generate student (peers) within the same net-
work, which allow us to achieve a sufficient amount of stu-
dent diversity, while without introducing any extra model
parameters.

The basic idea is simple: Let the teacher be the full
network, while the students be the sampled sub-networks.
Both the teacher and students share weights since they are
inside the same network. The teacher can be considered
as the implicit ensemble of all students. The analogy is
that the students and teacher are Oneness, where students
are the smaller individual and together form a more pow-
erful larger collection. Individual (student) absorbs knowl-
edge from the collection (teacher), and the teacher grows
out from students.

The student network is sampled by randomly skipping
some portions of the full network during the forward pass.
In this case, there can be exponentially many student net-
works to be generated. By exploiting the dynamic archi-
tecture within the network, a certain degree of diversity can
be achieved. This is different from approaches based on
multi-branch [65, 5], where student diversity is limited to
the static branching structure. To gain better performance,
however, they require extra components such as gating or
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attention.
The whole training process is performed in a closed-

loop: forward prediction and backward distillation. The
forward prediction contains two passes: (1) one pass goes
through the full network to generate the teacher prediction;
(2) another pass goes through a randomly sampled sub-
network to generate the student prediction. The backward
distillation aims to transfer knowledge from the teacher to
all students, which is the teacher itself. The whole process
can be considered as seamlessly incorporating distillation
as a regularization into the training procedure. An overview
is shown in Fig. 1.

2. Related Works
2.1. Knowledge Distillation

Knowledge Distillation (KD) originated from [3], popu-
larized by [21], now become a hot research topic [16, 48]
applied in many areas [51, 52, 64, 12]. The key problem is
how to transfer the knowledge from a large teacher model to
a small student model. It contains two major components:
knowledge and distillation scheme.

Knowledge. Depending on what information that the stu-
dent model try to mimic from the teacher model, KD meth-
ods can be broadly categorized into three categories [16]:

(1) Response-based knowledge refers to the final pre-
diction of the teacher model. It is simple yet effective, and
has been widely used in different tasks [7, 61, 31] and ap-
plications [43, 22]. The most popular form is also known as
soft target [21, 1], which can be considered as label smooth-
ing or regularization [25, 32, 11]. Our approach belongs
to this category. (2) Feature-based knowledge is an ex-
tension of the response-based, which considered both the
output of the last layer and the output of intermediate lay-
ers [40, 58, 24, 20, 37, 8, 49, 10, 19]. (3) Relation-based
knowledge further explores the relationships between dif-
ferent layers [55, 60, 28, 35, 9, 30, 6] or data samples
[30, 33, 34, 36, 46, 38].

Distillation Schemes. The distillation schemes can be di-
rectly divided into three main categories: offline distilla-
tion, online distillation and self-distillation.

While offline distillation requires a pre-trained teacher
model, online and self-distillations aims to fulfill the ab-
sence of the teacher role from different aspects. Typically,
self-distillation approaches take advantage of generation in
the training trajectory [13, 54], the information flow within
the network [62] or class information [57]. However, many
approaches on this line come with a complex workflow or
architecture design.

Online distillation [41, 63, 65, 5, 17, 50] allows both the
teacher and student(s) study together from each other. The

basic idea is to simultaneously training a group of student
models by learning from peers predictions as an effective
substitute for the static pre-trained Teacher. However, there
are drawbacks. First, online ensemble KD simply aggre-
gate students logits to form an ensemble teacher restrains
the diversity of student peers, thus limiting the effectiveness
of online learning learning. Second, existing approaches
adopt a multi-branch architecture leading to storage-heavy
consumption and also not flexible for ensemble in a more
versatile or dynamic way. Our approach falls into this cate-
gory. Different from traditional online distillation methods,
we intends to generate diversity within the network instead
of any auxiliary branches, leading to a storage-efficient so-
lution.

Concurrent with our work, Mean Teacher [45] also con-
struct the teacher model without extra parameters by using
the average model weights of the training epochs. The dif-
ference is that [45] focus on the semi-supervised learning,
while ours belongs to supervised learning and explore on
the architecture aspect.

2.2. Structure Regularization

Structure regularization is one category of regularization
methods which imposes constraints on the network weights
and structure to reduce over-fitting. Dropout [42] randomly
drops some connections during training to prevent units
from co-adapting. Many following works share the idea
of Dropout by randomly dropping different portion of net-
work, such as DropConnect [47], StochDepth [23], Shake-
Shake [14] and ShakeDrop [53]. For example, StochDepth
[23] randomly drops a subset of layers during training. The
final network can be viewed as an ensemble of many shal-
low networks.

2.3. Implicit Ensemble

An alternative to traditional ensembles, so-called “im-
plicit” ensembles have high efficiency during both training
and testing. From the architecture perspective, Dropout
[42], DropConnect [47] and Stochastic Depth [23] can be
considered as sampling sub-networks at different levels.
Dropout [42] creates an ensemble out of a single model by
“dropping” random sets of hidden nodes during each mini-
batch. DropConnect [47] and Stochastic Depth [23] can be
considered as specific cases of Dropout operating on the
edge and layer level, respectively. In this work, we take ad-
vantage of implicit ensemble to generate student networks.
This is different from one-shot architecture search [2] where
the sub-network weights are dynamically generated, which
requires a more complicated process.
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Figure 1: Overview. Teacher: full network. Student: sampled sub-network for each mini-batch. Other components are not
shown for a simple illustration. Red: Student forward pass. Blue: Teacher forward pass. Green regions indicate the survival
probability for the Residual Block (ResBlock), the larger the higher sample (“survival”) probability is. Best view in color.

3. Method
3.1. Preliminary on Knowledge Distillation

Knowledge distillation [3, 21] is an effective technique
to transfer knowledge from a strong teacher network to a
target student network. The training task can be generalized
as the following formulation:

θ̂S = argmin
θS

N∑
i

Lce(xi, θS , yi)+Ldistill(xi, θS , θT ), (1)

where xi is an image, yi is the ground-truth label, θS is
the student network parameter, and θT is the teacher net-
work parameter. The loss Lce is the matching error between
the network prediction and the ground-truth label. For clas-
sification, it is normally a cross-entropy loss. The loss of
Ldistill is the mimic error of the student towards the teacher.
For example in [21], the teacher signal comes from the soft-
max prediction, and the loss is measured by the Kullback-
Leibler divergence.

3.2. Preliminary on Structure Regularization

Structure regularization is one category of regularization
methods that imposes constraints on the network weights
and structure to reduce over-fitting. Dropout [42] randomly
drops some connections during training to prevent units
from co-adapting. Many following works share the idea of
Dropout by randomly dropping network layers or branches.

While sub-network generation strategy is not the focus
of our work, in this paper, we adopt StochDepth [23] which
randomly dropping network layers as a means to generate
sub-network as student.

In particular, during training StochDepth [23] sample
sub-networks via randomly dropping entire ResBlocks and
bypassing their transformations through skip connections.
In Residual networks [18], a ResBlock output is as follows:

Hl = ReLU(fl(Hl−1) +Hl−1) (2)

where Hl denotes the output of the lth layer, fl(·) represents
a typical convolutional transformation from layer l− 1 to l.
Here we assume a ReLU activation function.

Let bl ∈ {0, 1} denote a Bernoulli random variable in-
dicating whether the lth ResBlock is active (bl = 1) or not
(bl = 0). The survival probability of the lth ResBlock is
denoted as pl = Pr(bl = 1).

Based on Eq. 2, the update rule of ResBlock for sub-
networks is re-formulated as

HTrain
l = ReLU(blfl(H

Train
l−1 ) +HTrain

l−1 ) (3)

That being said, if bl = 1, Eq. 3 functions as a ResBlock; if
bl = 0, the ResBlock reduces to a skip connection.

During testing, all blocks are activated, the update rule
becomes the combination of all possible networks with each
layer weighted by its survival probability:

HTest
l = ReLU(plfl(H

Test
l−1) +HTest

l−1) (4)

3.3. Self-Guidance

The basic idea is to train sub-network to match the pre-
diction of the full network, so-called “Self-Guidance”. Un-
der the “teacher-student” framework, we construct both
teacher and student within the same target network. Stu-
dent network is the sub-networks that randomly skip some
portions of the full network. The teacher network is the full
network, can be considered as the ensemble of all possible
student networks.

Student-Teacher Predictions. To generate student and
teacher prediction, we borrow the idea of Dropout and
its variants. Specifically, we consider the full network
(teacher) as the implicit ensemble of all possible sub-
networks (students). In particular, we take advantage of the
training (Eq. 3) and testing (Eq. 4) update rules to gen-
erate student and teacher predictions in the same network,
respectively.
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Thus, our approach contains two forward passes: (1)
one pass goes through a randomly sampled sub-network to
generate student prediction (Eq. 3); (2) another pass goes
through the full network to generate student prediction (Eq.
4);

Distillation. We denote by T and S the teacher and stu-
dent networks respectively. Let pNet, Net = {T, S} be
the prediction output and ziNet be the K class logits where
i = 1, ...,K, which is followed by the softmax function
pNet = s(ziNet) =

exp(zi
Net/τ)∑

j exp(zj
Net/τ)

with temperature τ

(τ = 1 for Cross Entropy loss). The distillation loss Ldistil

is the Kullback-Leibler divergence which measure the dis-
crepancy between the student and teacher prediction using
soft label (τ > 1).

Overall Loss Function. Our training paradigm is formu-
lated as:

θ̂T = argmin
θT

N∑
i

LS
ce(xi, θS , yi) +

LT
ce(xi, θT , yi) + λ ∗ τ2 ∗ Ldistill(xi, θS , θT ),

(5)

where Lce is cross-entropy loss, Ldistill = KL(pS , pT )
with τ > 1 indicating soft label, and λ is the trade-off pa-
rameter to scale the losses. Following [65], we multiply the
distillation loss term by a factor τ2 to ensure that the relative
contributions of ground-truth and teacher prediction remain
roughly unchanged.

Training and Deployment. Thus, without sourcing to a
multi-branch architecture, our method is simple: we use
two forward passes to generate S and T predictions, respec-
tively, update the full-network based on Eq. 5. Note that
this leads to storage-efficient approach. Once the model is
trained, we can simply use the teacher prediction for de-
ployment. And only one forward pass is needed as the
model testing normally does. Summary is in Algorithm 1.

4. Experiments

4.1. Image Classification

Datasets. We used two multi-class categorization bench-
mark datasets in our evaluations. (1) CIFAR10 [26]: A nat-
ural images dataset that contains 50,000/10,000 training/test
samples drawn from 10 object classes (in total 60,000 im-
ages). Each class has 6,000 images sized at 32×32 pix-
els. (2) CIFAR100 [26]: A similar dataset as CIFAR10 that
also contains 50,000/10,000 training/test images but cover-
ing 100 fine-grained classes. Each class has 600 images.

Algorithm 1: Self-Guidance
Input: Labelled training data (x, y); Training
epoch number M ;
Output: Trained model θT (teacher);

/* Training */
Initialization: i = 1; Randomly initialize θT ;
Assign survival probability pl to each Residual
Block.

while i ≤ M do
for each mini-batch do

Randomly sample a sub-network (student)
θS ;

Compute student prediction. Eq. 3;
Compute teacher prediction. Eq. 4;
Compute soft labels of S and T ;
Update θT by SGD algorithm. Eq. 5.

end
end
/* Testing */
Deployment: Use θT and teacher prediction. Eq.
4.

Method CIFAR10 CIFAR100 Params
ResNet-32 [18] 6.34 30.14 0.47M
ResNet-32 + Ours 5.73 27.65 0.47M

(+0.61) (+2.49)
ResNet-50 [18] 6.07 28.37 0.76M
ResNet-50 + Ours 5.28 25.33 0.76M

(+0.79) (+3.04)
ResNet-110 [18] 5.43 26.18 1.15M
ResNet-110 + Ours 4.65 21.60 1.15M

(+0.78) (+4.59)

Table 1: Image Classification Results on CIFAR10/100.
Metric: Top-1 error rate (%).

Setup. For all datasets, we adopted the same experimental
settings as for making fair comparisons [23, 65]. We used
the SGD with Nesterov momentum and set the momentum
to 0.9 with weight decay 1e-4. Batch size is 128, training
epoch is 300. We deployed a standard learning rate sched-
ule that drops from 0.1 to 0.01 at 50 % training and to 0.001
at 75%. Following [21], we set τ = 3 in all the experiments.
Cross-validation of hyper-parameters1 may give better per-
formance but at the cost of extra model tuning. Trade-off
parameter λ is set to be 0.25. We adopted the common top-
1 classification error rate.

1For student network generation, we follow the same hyper-parameter
setting as [23].
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Figure 2: Training and testing error for ResNet-110 on CIFAR10 and CIFAR100, repectively. Thin lines indicate training
error, bold lines indicate test error.

Method CIFAR10 CIFAR100 Params
baseline [18] 6.34 30.14 0.47M
DML [63] 6.22 28.47 1.4M
ONE [65] 5.89 27.30 1.18M
Ours 5.73 27.65 0.47M

Table 2: Comparison with online distillation methods. Im-
age classification error rates (Top-1, %) on CIFAR10 and
CIFAR100. Target Network: ResNet-32 [18]. Bold: best
result. Underline: second best.

Results. Table 1 compares top-1 error rate performances
of varying-capacity state-of-the-art network models trained
by the standard procedure and our approach on CI-
FAR10/100. We observe that all different target networks
benefit from our training algorithm achieving significant
performance gains. This suggests a general superiority of
our approach for online knowledge distillation even with-
out introducing extra parameters to the target model.

Table 2 shows the comparison with state-of-the-art on-
line distillation methods on ResNet-32. Our approach pro-
vides competitive performance while maintaining storage-
efficient. On CIFAR10, ours achieves a 5.73% error rate,
which surpasses other online distillation methods. On CI-
FAR100, we maintain a 27.65% error rate being similar to
ONE as 27.30% while using only about 40% model param-
eters of its amount.

Fig. 2a and 2b show the training and test errors for
ResNet-110 on CIFAR10/100 respectively. We have two
observations: (1) With our approach, the gap between train-
ing and test error is reduced significantly. This suggests
that KL divergence as the distillation loss function as regu-
larization effectively. It demonstrates that our approach as
a training algorithm can prevent overfitting effectively. (2)
For standard training, almost no progress is made after 225

Method FER-2013 RAF Params
ResNet-32 [18] 32.85 18.55 0.47M
ResNet-32 + Ours 31.33 17.80 0.47M

(+1.52) (+0.75)
ResNet-50 [18] 31.83 17.67 0.76M
ResNet-50 + Ours 30.38 16.43 0.76M

(+1.45) (+1.24)
ResNet-110 [18] 32.35 19.62 1.15M
ResNet-110 + Ours 30.48 16.53 1.15M

(+1.87) (+3.09)

Table 3: Facial Expression Recognition Results. error rates
(Top-1, %) on FER-2013 and RAF.

epochs. With our approach, both training and test error con-
tinue to reduce. This suggests that our approach facilitates
the ease of optimization and can achieve better local mini-
mums.

4.2. Facial Expression Recognition

Datasets. We used two benchmarks facial expression
datasets with 7 human facial expressions. (1) FER-2013
[15]: It consists of 28,709 gray-scale images for training
and 3,589 for testing. (2) RAF [29] is a real-world facial
expression recognition dataset, which contains 12,271 RGB
images for training and 3,068 for testing. Here we use the
basic 7 expression categories.

Setup. Similar to CIFAR, we resize images to 32x32. For
FER-2013, image channels are duplicated to make them
RGB images. All training settings and hyperparameters are
the same as the image classification task. (See Sec. 4.1.)

Results. (1) Improve generalization ability. Tab. 3
shows the classification results on FER-2013 and RAF on
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Method FER-2013 RAF Params
baseline [18] 32.19 18.55 0.47M
DML [63] 31.91 18.48 1.4M
ONE [65] 31.90 17.85 1.18M
OKDDip [5] 31.40 17.42 1.53M
Ours 31.33 17.80 0.47M

Table 4: Comparison with online distillation methods. Fa-
cial Expression Recognition error rates (Top-1, %) on FER-
2013 and RAF. Target Network: ResNet-32 [18]. Bold:
best result. Underline: second best.

ResNets as the target networks with a variety of depths. It
shows that our approach consistently improves the perfor-
mances to a significant margin on depth 32, 50, and 110.
We observe that the peak performance comes from depth
50, and degrade when depth increases to 110. With our
approach, we are able to train ResNet-110 with 3.09% im-
provement, indicating a strong ability to prevent overfitting.
(2) Storage-efficiency. Tab. 4 show the comparison with
state-of-the-art online distillation methods. It shows that
our approach reaches on-par or even better performances
without introducing extra parameters, while other methods
typically use 2.5 to 3.25 times parameters, due to the multi-
branch architecture. This indicates our approach is storage
efficiency while maintaining competitive performance.

4.3. Ablation Study

Effect of trade-off parameter λ. We try different values
for the trade-off parameter λ as 0, 0.1, 0.25, 0.5, 1 and 3 us-
ing ResNet-50 on CIFAR10, and ResNet-110 on CIFAR100
respectively. Results are summarized in Table 5. Training
and test errors are shown in Fig. 3 and 4. Due to the highly
similar behaviors (overlapped curves) between λ = 0.1 and
λ = 0.25, we do not plot λ = 0.1 for better visual clarity.

Even with different architectures and datasets, we find
that the trade-off parameter λ = 0.25 achieves the best re-
sults in both scenarios. This suggests the balance between
the classification and distillation loss can be generic and
can easily generalize across architecture or datasets. We
observe that λ between 0.1 and 0.4 should work well gen-
erally. This suggests our hyper-parameter λ is not sensitive,
and works well in a decent range of values.

Model Component Analysis. Table 6 shows the benefits
of individual components of our approach on CIFAR100 us-
ing ResNet-110 as target network. We have these obser-
vations: (1) W/O Online Distillation by setting trade-off
λ = 0, our approach can be considered as Stochastic Depth
[23] but with a small difference: for each backpropagation,
Stochastic Depth update the weights of the sub-network,

while our approach updates weights of the full network. It
shows a 1.77 % performance drop from the full method.
(2) W/O Backward full network yields a degraded per-
formance with a large deviation. This indicates knowledge
transfer to all students is important. This is because all stu-
dent networks are shared weights, updating the full network
leads to a stronger student in the next forward pass. An al-
ternative explanation is that the teacher can be considered
as all students together. Updating weights for the full net-
work will lead to a stronger teacher in the next iteration.
This suggests our approach achieves the efficacy of knowl-
edge transfer between the teacher and student in an online
manner.

Feature Visualizations. Fig. 5 shows the t-SNE visual-
ization of student/teacher features on the penultimate layer
during the training procedure, using ResNet-50 as target
network train on CIFAR100. Specifically, student A and
B can be considered as having the same capacity, both have
20 ResBlocks being active (skipped 4 ResBlocks).

We have the following observations:
(1) More concentrated clusters are observed in the fea-

ture distributions from the teacher, indicating the teacher
network generates more discriminating features than the
students. This matches our expectation that the implicit
ensemble (teacher) outperforms significantly than its single
constitute component (student), ensuring the students can
distill knowledge from the teacher which is much stronger.

(2) Student networks have large variations. All three
student networks generate diverse feature distributions
throughout the training process. The same observation can
be found between Student A and B, even they have the same
capacity. This indicates a large amount of diversity among
the students, which is an important foundation to build a
strong ensemble.

(3) Features become more separable as the training pro-
ceeds. This observation holds for both student and teacher
networks, which suggests that training proceeds effectively.

5. Conclusions
We proposed Self-Guidance, a simple training scheme

that improves deep neural network generalization. It con-
ducts ensembles that pertain to a large degree of variety in
an on-the-fly manner without introducing extra model pa-
rameters. It naturally integrates the properties of structure
regularization and knowledge distillation, which leads to a
generic training strategy with both higher performance and
memory efficiency.
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Figure 5: t-SNE visualization of student/teacher features during the training process. Student A:
111111111110101010111111; Student B: 111111111110111110111001; Student C: 111111111001111111011010.
‘1’ indicates the ResBlock at the corresponding layer is active, and ‘0’ indicates inactive. Student A and B can be considered
as having the same capacity, both have 20 ResBlocks being active (skipped 4 ResBlocks).
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