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As mentioned in the main paper, the following supple-
mentary material includes: (1) Performance analysis of
Negative Learning against different noise distributions. (2)
Noise cleaning performance of the proposed NEL method.

1. Negative Learning vs. Noise Distributions

Negative Learning (NL) is an indirect learning method
in which a model is optimized to produce a lowest confi-
dence to a randomly chosen complementary label for the
given input image. Such a method produces more reliable
performance in the case of a noisy label set. Nevertheless,
the applicability of the existing NL method [1] is limited to
a type of noise showing uniform distribution (Symmetric-
Noise). To better highlight the limitations of existing NL
method, figure 1 shows the confusion matrix for the initial
noise along with the histograms of the noisy and clean sam-
ple’s confidence distribution obtained after trining.

As shown in Figure 1a, when labels are initially af-
fected by Symmetric-Noise, noisy samples are classified
with low confidence whereas the clean samples are leaned
to high confidence. Consequently, effective noise separa-
tion is achieved by NL.

For the Asymmetric-Noise, mimicking some of the struc-
tures of real errors [3] i.e., for MNIST, mapping 2→7, 3→8,
7→1, and 5↔6, existing NL method’s effectiveness de-
grades considerably. As can be seen in Figure 1b, noisy
samples are overfitted with quite high confidence (even
higher than 50%). Yet, sub-optimal separation still exists if
we consider samples carrying confidence higher than 90%
only(though it is not generalizable for other benchmarks
where all clean samples do not carry such high confidence).

Nevertheless, noisy samples are overfitted with very
high confidence when shift-noise associated with inferred
pseudo-labels [2] is considered (Figure 1c). This happens
because, in the shift-noise, inferred labels are affected by a
noise skewed towards some of the classes e.g., class 3 and 4
in Figure 1c). So, instead of struggling with low confidence

(the central idea of NL), noisy samples obtain higher confi-
dence in relation to skewed (noisy) classes. Consequently,
subsequent Positive Learning achieves sub-optimal perfor-
mance with such noise distribution in the UDA framework.

Please note that in all cases, the amount of noise is same
i.e. 32.97%, similar to the amount of shift-noise observed in
the case of SVHN → MNIST UDA task in Table 1.

2. Noise Cleaning Performance of NEL

We demonstrate here the adaptive noise filtering and pro-
gressive pseudo-label refinement ability of the proposed
NEL method. In Figure 2 we evaluate the robustness of our
method in achieving effective pseudo-label refinement over
three runs while considering the most challenging UDA task
i.e., multi-source UDA on DomainNet. Specifically, Fig-
ure 2a shows the adaptiveness of γ threshold for different
UDA tasks in which inferred pseudo-labels are affected by
the various amount of noise i.e., starting from 31.47% up
to 82.40% of shift-noise. As can be seen in Figure 2b, in
each case, NEL achieves quite reasonable noise reduction
throughout the training process. Such a trend is also ob-
served in single-source UDA on Digit5 benchmarks (see
main paper). However, the only difference in the two cases
is that the change in γ threshold is comparatively smoother
for Digit5 which eventually takes more epochs for pseudo-
label refinement (and achieves better noise reduction too).

To conclude, in Table 1-4, we summarize statistics con-
cerning classification accuracy along with standard devia-
tions of (i) inferred pseudo-labels — obtained using pre-
trained source model, (ii) refined pseudo-labels — obtained
using the proposed Negative Ensemble Learning (NEL)
method, and (iii) the single-target model trained with the
refined pseudo-labels — the final stage of the proposed
method. In many cases, we achieve better performance with
NEL only. However, for a fair comparison with existing
works, the main paper compares the results achieved using
a single target model only.



(a) Symmetric-Noise (b) Asymmetric-Noise (c) Shift-Noise

Figure 1: Noise filtering capability of the existing Negative Learning method [1] over various noise distributions. Column (a) Symmetric
Noise, column (b) Asymmetric artificial noise [3], column (c) Shift noise [2]. First row: the confusion matrix shows how the noise is
distributed in the beginning. Second row: confidence prediction for the noisy samples after training with NL. Third row: confidence
prediction for the clean samples after training with NL. The amount of initial noise is same in magnitude (i.e. 32.97%) for all the cases.

(a) Adaptiveness of γ threshold. (b) Progressive noise reduction by pseudo-label refinement.

Figure 2: Training evolution on DomainNet. Multi-source case: for each target, the rest of the domains are considered as source. For
better representation, we concatenate noise reduction trends with different scales in (b). Legend: C: Clipart, I: Infograph, P: Painting, Q:
Quickdraw, R: Real, S: Sketch, and σ: Instantaneous standard deviation of three runs.



Source T T T S U
Avg.

Target U S M T T
Inferred 86.3 34.7 63.8 67.0 70.2 64.4
Refined 99.1±0.04 62.0±0.10 97.5±0.03 99.2±0.05 99.2±0.02 91.4±0.05
NEL 97.4±0.10 61.6±0.29 95.4±0.16 99.2±0.02 99.2±0.02 90.6±0.12

(a) Single-Source UDA.
Source M,S,D,U T,S,D,U T,M,D,U T,M,S,U T,M,S,D

Avg.
Target T M S D U
Inferred 98.6 69.1 52.0 40.3 88.7 69.8
Refined 98.8±0.95 94.2±0.18 84.6±0.66 87.8±0.85 98.6±0.03 92.8±0.53
NEL 99.1±0.02 95.5±0.71 89.6±0.55 90.0±0.63 97.8±0.15 94.4±0.41

(b) Multi-Source UDA.

Table 1: Results on Digit5. Legend: T: MNIST, S: SVHN, U: USPS, M: MNIST-M, and D: Synthetic-Digits.

Source P A Avg.

Target (Combined) A,C,S P,C,S
Inferred 37.7 57.9 47.8
Refined 57.3±1.13 73.8±0.81 65.6±0.97

Target A C S P C S
NEL 80.1±0.37 76.1±1.62 25.9±0.82 96.0±0.34 82.8±1.09 49.8±0.89 68.4±0.90

(a) Multi-Target UDA. The final accuracy on each target is achieved using the same target model trained with refined pseudo-labels.
Source P P P A A A

Avg.
Target A C S P C S
Inferred 60.9 24.8 26.5 96.0 58.1 43.9 51.7
Refined 81.1±0.44 76.9±1.36 31.7±0.98 98.2±0.19 80.9±0.77 51.2±1.04 70.0±0.80
NEL 82.6±0.83 80.5±2.66 32.3±0.68 98.4±0.03 84.3±1.50 56.1±1.27 72.4±1.16

(b) Single-Source UDA.
Source C,P,S A,P,S A,C,S A,C,P

Avg.
Target A C P S
Inferred 78.4 77.9 95.3 64.5 79.0
Refined 89.3±0.36 87.2±0.15 98.1±0.23 83.2±0.86 89.5±0.40
NEL 90.8±0.08 89.5±0.54 98.8±0.12 85.2±0.73 91.1±0.37

(c) Multi-Source UDA.

Table 2: Results on PACS. Legend: A: Art-Painting, C: Cartoon, P: Photo, and S: Sketch.

Methods plane bcycl bus car horse knife mcycl person plant skate train truck Avg.
Inferred 64.2 6.3 75.2 21.7 55.9 95.7 22.8 1.4 79.8 0.7 82.8 19.8 46.3
Refined 95.2 64.8 90.8 89.7 87.4 93.7 91.5 88.5 56.4 82.9 97.1 93.8 85.1

±0.05 ±0.11 ±0.23 ±0.27 ±0.08 ±0.51 ±0.21 ±0.66 ±1.01 ±0.37 ±0.09 ±0.15 ±0.31
NEL 94.5 60.8 92.3 87.3 87.3 93.2 87.6 91.1 56.9 83.4 93.7 86.6 84.2

±0.29 ±0.31 ±0.46 ±0.78 ±0.55 ±0.02 ±0.58 ±0.27 ±0.09 ±0.44 ±0.07 ±0.74 ±0.38

Table 3: Results on Visda-C.

Target C I P Q R S Avg.
Inferred 68.5 23.6 53.5 17.6 65.9 55.2 47.4
Refined 71.1±0.11 28.0±0.05 59.5±0.12 21.6±0.44 70.4±0.04 61.3±0.03 52.0±0.13
NEL 68.3±0.15 22.1±0.17 54.7±0.15 22.8±0.45 67.3±0.92 57.1±0.27 48.7±0.35

Table 4: Multi-Source UDA results on DomainNet. Legend: C: Clipart, I: Infograph, P: Painting, Q:
Quickdraw, R: Real, and S: Sketch.
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