
Identifying Wrongly Predicted Samples: A Method for Active Learning

Rahaf Aljundi Nikolay Chumerin Daniel Olmeda Reino

Toyota Motor Europe

1. Introduction
These supplementary materials are structured as follows:

Section 2: detailed derivation of our kernel for multi-class
classification; Section 3: estimation of the computational
cost of our criterion in comparison to other criteria; Sec-
tion 4: additional details on experimental setting; Section 5:
extra empirical analysis and additional results on both bal-
anced and imbalanced settings; Section 6: details on deploy-
ment setting of semantic segmentation experiments.

2. Derivation
In the main paper, Section 3.1, we consider an example

of a multi-class classification problem with a softmax cross
entropy loss and construct our kernel as follows:

Kθ(xi, xj) =

(∇θf(xi; θ)ᵀ (pi − yi)) · (∇θf(xj ; θ)ᵀ(pj − yj)) . (1)

Here is the derivation of this kernel. Starting from

Kθ(xi, xj) = ((∇θf(xi; θ))ᵀ `′)·((∇θf(xj ; θ))ᵀ `′) . (2)

The output of the softmax function for each class c is defined
as pc = exp(fc(x;θ))∑

k exp(fk(x;θ))
, which gives the probability of a

class c given f c(x; θ) the output of the class c logit. We
define p = [p1, . . . , pk]ᵀ as the output probability vector for
sample x. The cross entropy loss of one sample can be then
written as ` = −y · log(p) =

∑
c−yc log(pc), where y =

[y1, . . . , yk]ᵀ is a one-hot encoded (yc ∈ {0, 1},
∑
c y

c = 1)
vector. Following this, the derivative of the softmax cross
entropy loss w.r.t. the neural network function output f(x; θ)
is defined as `′ = p− y. By replacing the derivative of the
loss in (2) we get the kernel in (1).

3. Computational Cost Estimation
In this section, we compare the computational cost

of estimating our criterion, Eq.3 in the main paper, and
our approximated criterion, Eq.10 in the main paper, to
that of estimating the criterion of MC-Dropout [4]. The
comparison is done on per sample basis i.e., we will estimate

the computational cost of estimating each criterion for a
given pool sample. Let’s denote the cost of the forward pass
of a neural network with C and assume that the backward
pass is roughly of a similar cost. MC-Dropout [4] requires
multiple forward passes to estimate the model uncertainty
of predictions (Monte Carlo sampling). Given number
of samples n, the cost of estimating the MC-Dropout
criterion, assuming we forward through the full network, is
approximately nC. For IWPS, we limit the minimization
of the loss to few iterations T . As such, the minimization
of the loss requires approximately 2T C. In addition, we
need to estimate the loss on the holdout set after the pseudo
loss minimization. We use a small holdout set that can be
combined in one mini batch of size Nh and its loss can
be estimated with cost ≈ NhC. Following this, IWPS
computational cost is approximately 2T C + NhC. For
IWPS-app, it requires mainly computing the gradients of
the pool sample which will be of cost 2C, note that the gra-
dient of the holdout set ∇θ`v(θs) needs to be pre-computed
only once for all the pool samples and can be stored from
the last validation step, hence not considered here. Further,
when limiting the criterion estimation to the last layer, which
presumably has a forward pass cost close to 1

LC with L
the number of layers in the deployed neural network, the
cost of IWPS will be

(
Nh + 1 + 1

L + 2(T −1)
L

)
C, as we

only need to propagate the sample through the full network
once, with the cost of the first iteration (1 + 1

L )C . For
IWPS-app the approximate cost will be (1 + 1

L )C.

4. Deployment Settings

For our method IWPS, in all experiments we limit the
number of iterations of pseudo loss minimization to 3 itera-
tions and use a learning rate of 0.001 for the fully connected
network and 0.0001 for ResNet. These parameters were set
based on the accuracy of selecting wrongly predicted sam-
ples in an initial experiment on the initial training sets. For
both MC-Dropout and BALD, we use Monte Carlo sam-
pling with n = 10 number of samples. For MC-Dropout,
we use uncertainty, as defined in [4], as the ranking crite-



(a) (b) (c)

Figure 1: tSNE visualization of initial training samples and selected pool samples on MNIST benchmark with 200 training
samples and 50 selected as annotation step. (a) Random (b) IWPS (c) IWPS-app. Dots are training data while each cross
(×) represents a selected pool sample.

Figure 2: Examples of selected pool samples using IWPS criterion, based on: MNIST, KMNIST, SVHN and Cifar10 balanced
datasets from top to bottom.

rion. Dropout is placed on each fully connected layer, for
both architectures, with p = 0.2. For Coreset, we use the
features of the last layer and the greedy solver1.

On the different studied datasets, models were trained
using ADAM optimizer and a learning rate of 0.001 with
early stopping on the validation set. We use a mini batch
size of 50 for the fully connected network and 64 for ResNet.

1github.com/google/active-learning/blob/master/sampling˙methods/kcenter˙greedy.py

We split the training set into train, validation and pool and
report results on the test set.



0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.50

0.55

0.60

0.65

0.70

0.75

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10 annotation_step: 10
IWPS_lastlayer
IWPS_full

(a)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10 annotation_step: 20
IWPS_lastlayer 
IWPS_full

(b)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10 annotation_step: 50
IWPS_lastlayer 
IWPS_full

(c)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.55

0.60

0.65

0.70

0.75

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 20 annotation_step: 10
IWPS_lastlayer 
IWPS_full

(d)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.55

0.60

0.65

0.70

0.75

0.80

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 20 annotation_step: 20
IWPS_lastlayer 
IWPS_full

(e)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 20 annotation_step: 50
IWPS_lastlayer 
IWPS_full

(f)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 40 annotation_step: 10
IWPS_lastlayer 
IWPS_full

(g)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.65

0.70

0.75

0.80

0.85

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 40 annotation_step: 20
IWPS_lastlayer
IWPS_full

(h)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.65

0.70

0.75

0.80

0.85

0.90
M

et
ho

ds
 p

er
fo

rm
an

ce

Base class: 40 annotation_step: 50
IWPS_lastlayer 
IWPS_full

(i)

Figure 3: Performance (mean acc. and std. dev.) of IWPS on different configurations of MNIST imbalanced benchmark when
optimizing the pseudo loss, Eq.2 in the main paper, on the last layer only vs. the full network.

5. Additional Experiments and Ablation on Im-
age Classification

5.1. Comparison of Optimizing the Pseudo Loss on
the Full Network vs. the Last Layer

In our experiments, we limit the optimization of the loss
of each pool sample given its pseudo label, Eq.2 in the
main paper, to the classification layer. Here, we compare
optimizing the full network to the optimization of the last
layer only. Figure 3 shows the performance of both variants
on MNIST imbalanced benchmark with different base class
sizes (10, 20, 40) and varied annotation step sizes. As it
can be seen there is no significant difference in our method

performance when the optimization of the pseudo loss is
limited to the last layer as opposed to the full model.

5.2. Holdout Set Size and Alternatives

In the main paper, we show an ablation of the holdout size
size on SVHN imbalanced setting. Figure 7a and 7b report
the results of using different holdout set sizes on the MNIST
balanced and imbalanced settings respectively. Similar to
the notes made in the main paper, only the very smallest size,
one sample per class deteriorates the performance of IWPS.
However, there is no significant difference between the other
sizes.

We have also discussed deploying a subset of the train-



0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.60

0.65

0.70

0.75

0.80

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 50, Annotation step: 10
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(a)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 100, Annotation step: 10
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(b)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.80

0.82

0.84

0.86

0.88

0.90

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 200, Annotation step: 20
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(c)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.38

0.40

0.42

0.44

0.46

0.48

0.50

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 50, Annotation step: 5
IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD
Err-Reduction 
BADGE

(d)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 200, Annotation step: 20
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction
BADGE

(e)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 200, Annotation step: 50

IWPS
IWPSapp
Random
Coreset
MCDropout
BALD
ErrReduction
BADGE

(f)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 100, Annotation step: 100
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(g)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 200, Annotation step: 200
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(h)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.3

0.4

0.5

0.6

0.7

0.8
M

et
ho

ds
 p

er
fo

rm
an

ce

Initial train: 500, Annotation step: 250

IWPS
IWPS-app
Random

Coreset
MC-Dropout
BALD
Err-Reduction 
BADGE

(i)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.35

0.40

0.45

0.50

0.55

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 1000, Annotation step: 500
IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD
Err-Reduction
BADGE

(j)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.48

0.50

0.52

0.54

0.56

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 2500, Annotation step: 250
IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD
BADGE

(k)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.66

0.68

0.70

0.72

0.74

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 10000, Annotation step: 1000
IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD
BADGE

(l)

Figure 4: Additional results on different configurations of the balanced setting (mean acc. and std. dev.). First row shows
MNIST, second shows KMNIST, third row shows SVHN and fourth row shows Cifar10 results. For Cifar10, unfortunately not
all results of BADGE [1] and Err-Reduction [6] were ready.



0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.40

0.45

0.50

0.55

0.60

0.65

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10, Annotation step: 10
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(a)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 20, Annotation step: 20
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(b)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 40, Annotation step: 40
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(c)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10, Annotation step: 10
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(d)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.35

0.40

0.45

0.50

0.55

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 20, Annotation step: 20
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(e)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.40

0.45

0.50

0.55

0.60

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 40, Annotation step: 40
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(f)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 50, Annotation step: 50
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(g)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.3

0.4

0.5

0.6

0.7

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 100, Annotation step: 100
IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(h)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
M

et
ho

ds
 p

er
fo

rm
an

ce

Base class: 200, Annotation step: 200

IWPS
IWPS-app
Random
Coreset
MC-Dropout 
BALD
Err-Reduction 
BADGE

(i)

0 1 2 3 4 5 6 7 8 9
Annotation steps

0.30

0.35

0.40

0.45

0.50

0.55

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 250, Annotation step: 2500
IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD

(j)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 1000, Annotation step: 1000
IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD
Err-Reduction

(k)

0 1 2 3 4 5 6 7
Annotation steps

0.52

0.54

0.56

0.58

0.60

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 2000, Annotation step: 2000

IWPS
IWPS-app
Random
Coreset
MC-Dropout
BALD
Err-Reduction

(l)

Figure 5: Methods performance (mean acc. and std. dev.) with imbalanced rate of 1/20. First row shows MNIST, second
shows KMNIST, third row shows SVHN and fourth row shows Cifar10. For Cifar10, unfortunately not all results of BADGE [1]
and Err-Reduction [6] were ready.



0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 50, Annotation step: 5

IWPSappOnTrain
IWPSapp
IWPS
IWPSOnTrain

(a)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.50

0.55

0.60

0.65

0.70

0.75

M
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10, Annotation step: 10

IWPSapp
IWPS
IWPSappOnTrain
IWPSOnTrain

(b)

0 1 2 3 4 5 6 7 8 9 10
Annotation steps

0.3

0.4

0.5

0.6

0.7

M
et

ho
ds

 p
er

fo
rm

an
ce

Initial train: 500, Annotation step: 50
IWPS-app-OnTrain
IWPS-OnTrain
IWPS
IWPS-app

(c)
Figure 6: Mean accuracy and std.dev. of IWPS and IWPS-app when using a holdout set versus a subset on the training set. (a) MNIST balanced, (b)
MNIST imbalanced and (c) SVHN balanced settings.

0 1 2 3 4 5 6 7 8 9 10
steps

0.72

0.74

0.76

0.78

0.80

0.82

0.84

m
et

ho
ds

 p
er

fo
rm

an
ce

initial_train: 100 annotation_step: 10

IWPS_holdout:10 
IWPS_holdout:20
IWPS_holdout:40 
IWPS_holdout:60
IWPS_holdout:80 
IWPS_holdout:100

(a)

0 1 2 3 4 5 6 7 8 9 10
steps

0.50

0.55

0.60

0.65

0.70

0.75

m
et

ho
ds

 p
er

fo
rm

an
ce

Base class: 10 annotation_step: 10

IWPS_Holdout:10 
IWPS_Holdout:20
IWPS_Holdout:40 
IWPS_Holdout:60 
IWPS_Holdout:80 
IWPS_Holdout:100

(b)

0 1 2 3 4 5 6 7
Annotation steps

0.45

0.50

0.55

0.60

0.65

m
et

ho
ds

 p
er

fo
rm

ac
e

Ours/Cityscapes, Initial train: 248, Annotation Step: 122; Optimization Steps: 10
LR=1e-1
LR=1e-2
LR=1e-3

(c)
Figure 7: (a),(b) ablation on the size of the holdout set effect for MNIST balanced and imbalanced setting respectively. (c) ablation on the effect of the
learning rate of the loss minimization step in IWPS.

ing set instead of a holdout set and showed the effect only
on SVHN imbalanced setting due to space limit. Here we
report the results of deploying a random subset of the train-
ing set versus the use of a holdout set on SVHN balanced
setting 6c, in addition to MNIST (6a) balanced and MNIST
imbalanced (6b) settings. As we discussed in the main paper,
the differences between the two configurations are more pro-
nounced on MNIST dataset possibly due to the simplicity
of this dataset leading to zero training error especially when
training on small sets as in the case of these experiments
50− 100.

5.3. Visualization of Selected Samples

To visualize the selected samples by both our methods,
in comparison to the random selection, we use tSNE visual-
ization of features before the last classification layer of the
model trained on the initial training set. On MNIST balanced
benchmark, Figure 1 shows the selected samples and the
initial training points for Random, IWPS and IWPS-app.
While Random selects samples that are similar to the train-
ing data and can be easily predicted by the current model,
both IWPS and IWPS-app select in regions between dif-
ferent training points clusters, where samples are likely to
be mispredicted. By adding these selected samples to the

training data, the model would learn better separable features
and more accurate decision boundaries.

Examples of selected images. Figure 2 shows example of
top ten selected images by IWPS on different datasets based
on the balanced setting.

5.4. Additional Results on Balanced Setting

Figure 4 presents additional results on the balanced set-
ting for MNSIT, KMNIST, SVHN and Cifar10 datasets. As
it can be seen our both variants show competitive perfor-
mance, however, differences between the compared methods,
in general, are not substantial.

5.5. Larger Imbalanced Rate

In the main paper, we present results on imbalanced
benchmarks with an imbalanced rate of 1/10, i.e. the under-
represented classes appear 1/10 in comparison to the other
categories. Here we repeat the same experiments with a
larger imbalanced rate of 1/20, and use a smaller balanced
validation set of size 1/10 to that of the initial train set. Fig-
ure 5 shows the performance of the compared methods on
different sizes of the initial training set with varied annota-
tion step sizes. As it can be seen that IWPS has significantly



better performance than other studied methods on MNIST,
KMNIST and SVHN. Our improvement reaches a margin
of 8%. Additionally, IWPS-app compares favorably to the
other methods. This illustrates the ability of our method to
overcome the imbalanced nature of the data and account for
the under-represented categories.

6. Semantic Segmentation Settings

Dataset. We apply the proposed methods on
Cityscapes [3]. It provides fine-grained labels of 19
different classes in 2945 images for training and 500 images
for evaluation. We further split the training set by randomly
drawing 248 and 2479 samples for our initial training and
pool sets and 248 for validation. At each annotation step,
we select 122 samples from the pool set and add them to the
training set. The evaluation split is reserved and used as a
test set.

Implementation. All methods follow the same training
procedure. The deployed architecture is Deeplabv3 [2] using
Resnet-50 [5] as a backbone, without auxiliary loss, initial-
ized with Imagenet pretraining [7]. At each annotation step,
we resume the training. The models are trained on random
crops of 712× 712, after rescaling the input images so that
the maximum dimension is 2048, with batch size of 24. We
apply random horizontal flipping of images and labels during
training. The models are optimized using SGD with momen-
tum 0.9, weight decay 10−4, polynomial learning rate decay
ηi = η0 · (1− i

imax
)γ , where ηi is learning rate at iteration i,

η0 = 10−2, γ = 0.9. Optimization was stopped early if the
validation loss did not improve for five consecutive epochs,
for a maximum of 50. All experiments are averaged over
five runs.

For IWPS, the minimization over the pseudo label (Eq. 2
in the main paper) is done using SGD without a momen-
tum or weight decay and with a constant learning rate 10−2,
for T = 10 steps per sample. Figure 7c shows the effect
of the learning rate in the pseudo loss minimization (Eq. 2
in the main paper) on the mIoU after each annotation run.
Large learning rate values improve the model in the first
iterations. Smaller values translate to slower but more stable
improvements, after a number of iterations. For IWPS-app
10 samples are randomly drawn from the hold-out set to com-
pute the average gradient direction. For MC-Dropout, we
use Monte Carlo sampling with n = 10 number of samples,
and activate the dropout layer present in the network, with
p = 0.1.

References
[1] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John

Langford, and Alekh Agarwal. Deep batch active learning

by diverse, uncertain gradient lower bounds. In International
Conference on Learning Representations, 2020.

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 3213–3223, 2016.

[4] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pages
1050–1059, 2016.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[6] N Roy and A McCallum. Toward optimal active learning
through sampling estimation of error reduction. int. conf. on
machine learning, 2001.

[7] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.


