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We provide in this supplementary document:
1) General description of CRF lossR [15].
2) Failure cases (Sec.2).
3) Ablation study (Sec.3).
4) Simulation of the impact of downscale factor of CAMs
over the localization performance (Sec.4).
5) Runtime inference for WSOL baselines and our method
(Sec.5) and number of parameters per model.
6) MaxBoxAccV2 performance over CUB (Tab.3).
7) Classification performance of different WSOL baselines
(Tab.5).
8) Convergence curves of WSOL baseline training. (Fig.9).
9) Comparison of localization performance curves
(Fig.7,8).
10) Comparison to CAMs activations distributions (Fig.5,
6).

1. General description of CRF loss

Given an input image X and the softmax activation S of
the decoder, the CRF loss is formulated [15] as,

R(S,X) =

t=2∑
t=1

St> W (1− St) , (1)

where W is an affinity matrix where W [i, j] captures the
color similarity and proximity between pixels i, j in the im-
age X . We consider using Gaussian kernel to capture color
and spatial similarities [8]. We use the permutohedral lat-
tice [1] for fast computation of W . Minimizing Eq.1 pushes
the decoder to produce consistent activations for nearby pix-
els with similar color.

2. Failure cases.
Fig.1 illustrates few examples over OpenImages test set

where our method failed to localize the correct object. The
fine-tuning of our method is guided mainly by the activa-
tions of the WSOL baseline. When the activations largely
miss the correct object, our method learns on wrong super-
visory signal leading to false localization. Detecting these
cases and dealing with them remains an open issue in this
work. This scenario goes under learning from highly noisy
supervisory signals which is still a growing field [14].

3. Ablation study
Tab.1 shows the impact of adding different terms in the

pixel alignment loss in our training loss on all backbones
and on both datasets using CAM* method. We observe that
simply adding sampling regions of foreground and back-
ground yields a large improvement of the baseline. This
shows the importance of using supervisory signals at pixel
level to guide CAMs. Baseline methods use only classi-
fication signal which is a global information. Adding lo-
cal guidance helps better discerning foreground from back-
ground. Adding a CRF term and size constraint helps better
extending the foreground while respecting object’s bound-
aries yielding more improvement. We report in Fig.2 the
impact of the hyper-parameter n− on the localization per-
formance. Note that n− describes the extent of the back-
ground region we are allowed to sample from. It is inter-
connected with the object size. Datasets with large objects
result in small background and small objects lead to large
background. This is reflected in these curves. On CUB,
often objects are small. Therefore, assuming large back-
ground is safe. As a result, large values of n− yield better
results. On the other hand, objects in OpenImages dataset



Figure 1: Failed cases of our method combined with CAM*
over OpenImages test set. Colors: green false negative, red
: true positive, blue: false positive. τ = 0.8.

tend to be large leaving small background, making small
values of n− more efficient. This gives us an intuition for
better range for n−.

CUB (MaxBoxAcc) OpenImages (PxAP)
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean

CAM* [20] 61.6 58.8 71.5 63.9 53.0 62.7 56.8 57.5
CAM* [20] + SR 84.2 73.0 82.2 79.8 64.5 64.1 63.8 64.1
CAM* [20] + SR + ASC 82.9 74.1 83.2 80.0 63.9 63.4 62.0 63.1
CAM* [20] + SR + CRF 84.6 78.9 86.1 83.2 66.3 68.3 67.5 67.3
CAM* [20] + SR + CRF + ASC 87.3 82.0 90.3 86.5 67.8 71.9 72.1 70.6

Improvement +25.7 +23.2 +18.8 +22.5 +14.8 +9.2 +15.3 +12.8

Table 1: Ablation study of different terms in the pixel align-
ment loss over CAM* baseline. The bottom line in green
is the improvement over the WSOL baseline CAM* (top
green line), when combined with our full method 4th green
line.

4. Simulation of the impact of downscale factor
of CAM over PxAP performance

The size of the CAM is influenced by many operations
in the model including convolution, and pooling operations.
Standard models such as Resnet family [5] downscales the
CAM by a factor z up to z = 32. In order to assess the im-
pact of such downscale factor over the localization perfor-
mance obtained through a CAM, we propose a simple simu-
lation. For this simulation, we consider the dataset OpenIm-
ages as it provides the pixel-wise annotation in order to eval-

Figure 2: Impact of n− on the localization performance
over CUB and OpenImages validation with CAM* base-
line + ours. Random runs are done while the rest of hyper-
parameters are fixed.

Figure 3: The localization performance over the test set of
OpenImages dataset using PxAP metric with respect to the
downscale factor z of the simulated CAM. The simulation
process is presented in Fig.4.

uate the PxAP performance. Instead of working directly on
a model, we substitute the model’s predicted low resolution
CAM by a downsampled, with factor z, version of the true
mask. Then, we measure the PxAP performance between
the upscaled CAM and the true mask. This yields an almost
perfect low resolution CAM but we assume it was predicted
by the model. The procedure is illustrated in Fig.4. The
results are presented in Fig.3. This figure shows that the
low resolution size of CAMs is a major bottleneck in local-
ization. Even when the low resolution CAM is directly the
downscaled version of the true mask, upscaling back to the
high resolution does not yield the exact mask due to loss
of information when downscaling. PxAP values in Fig.3
could be seen as an upper bound for pixel-wise localization
in function of the scale factor. This implies that our method
with full resolution can still yield better performance. These
results suggest as well that for a better localization perfor-
mance, it is better to use a low scale factor.



Figure 4: Simulation to evaluate the impact of CAM size over the localization performance using PxAP metric. In our
simulation, we substitute the low resolution CAM predicted by the model by downscaled version of the true mask by a factor
z allowing us to quickly change the scale and assess its impact on the localization performance using PxAP metric. The
scaling procedure is performed using bilinear interpolation.

5. Runtime analysis
We report in Tab.4 the time required to build a CAM for

all the studied WSOL finetuned baselines and other meth-
ods. While adding a decoder to a standard classifier in-
creases the number of parameters, the inference time is still
better than average finetuned baselines and competitive with
other CAM methods. Because the inference is achieved
through a single forward with fully convolutional opera-
tions, our method is expected to be fast. Other methods
may require a forward and a backward to estimate a CAM.
Our method is still competitive to ACoL, SPG, and ADL
methods. We included other methods ScoreCAM [16], SS-
CAM [19], and IS-CAM [9]. Their slow runtime prevented
us from considering them as baselines.

Backbone VGG Inception ResNet

Encoder

Layer 1 128 64 64
Layer 2 256 80 256
Layer 3 1024 288 512
Layer 4 – 768 1024
Layer 5 – 1024 2048

Decoder

Layer 1 256 256 256
Layer 2 128 128 128
Layer 3 64 64 64
Layer 4 – 32 32
Layer 5 – 16 16

Table 2: Architecture details. We use the same common
backbones VGG16, InceptionV3, and Resnet50 without
modification. Each backbone has its own definition of a
layer and specific number of layers.



CUB (MaxBoxAccV2)
Methods VGG Inception ResNet Mean

CAM [20](cvpr,2016) 63.7 56.7 63.0 61.1
HaS [13](iccv,2017) 63.7 53.4 64.7 60.6
ACoL [18] (cvpr,2018) 57.4 56.2 66.5 60.0
SPG [19](eccv,2018) 56.3 55.9 60.4 57.5
ADL [3] (cvpr,2019) 66.3 58.8 58.4 61.1
CutMix [17](eccv,2019) 62.3 57.5 62.8 60.8

Best WSOL 66.3 58.8 66.5 61.1
FSL baseline 71.6 86.6 82.4 80.2
Center baseline 59.7 59.7 59.7 59.7

ICL [7](accv,2020) 66.7 60.3 63.2 63.4

CAM* [20] (cvpr,2016) 57.0 54.4 62.1 57.8
GradCAM [12] (iccv,2017) 62.7 57.1 63.3 61.0
GradCAM++ [2] (wacv,2018) 73.8 60.7 70.2 68.2
Smooth-GradCAM++ [11] (corr,2019) 64.1 59.7 66.6 63.4
XGradCAM [4] (bmvc,2020) 62.8 56.7 63.2 60.9
LayerCAM [6] (ieee,2021) 74.1 62.6 72.6 69.7

CAM* [20] + ours 79.1 71.2 79.4 76.5
GradCAM [12] + ours 79.5 76.2 80.8 78.5
GradCAM++ [2] + ours 84.1 73.1 82.7 79.9
Smooth-GradCAM++ [11] + ours 83.1 74.0 81.6 79.5
XGradCAM [4] + ours 80.1 70.6 80.0 76.9
LayerCAM [6] + ours 84.3 73.9 82.7 80.3

Best WSOL + ours 84.3 76.2 82.7 80.3

Table 3: Performance on CUB using MaxBoxAccV2 met-
ric.



Backbones (encoders) VGG16 Inception ResNet50
Methods #PCL #NFM SFM #PDEC #PCL #NFM SFM #PDEC #PCL #NFM SFM #PDEC

Details ≈19.6 1024 28x28 ≈23.1 ≈25.6 1024 28x28 ≈5.7 ≈23.9 2048 28x28 ≈9

CAM* [20] .2ms .2ms .3ms
GradCAM [12] 7.7ms 21.1ms 27.8ms
GradCAM++ [2] 23.5ms 23.7ms 28.0ms
Smooth-GradCAM [11] 62.0ms 150.7ms 136.2ms
XGradCAM [4] 2.9ms 19.2ms 14.2ms
LayerCAM [6] 3.2ms 18.2ms 17.9ms

Mean 16.6ms 38.8ms 37.4ms

ours + STDCL 6.2ms 25.5ms 18.5ms

ACoL [18] 12.0ms 19.2ms 24.9ms
SPG [19] 11.0ms 18ms 23.9ms
ADL [3] 6.4ms 16.0 14.4ms

ScoreCAM [16] 1.9sec 3.4sec 9.3sec
SSCAM [10] 1min45sec 2min16sec 5min49sec
IS-CAM [9] 30.1sec 39.0sec 1min39sec

Table 4: Time required to build CAMs of different WSOL methods. STDCL: standard classifier = encoder (VGG16, Incep-
tion, ResNet50) + global average pooling. #PCL (millions): number of the parameters of the classifier. #NFM: number of
the feature maps at the top layer. SFM: size of the feature maps at the top layer. #PDEC (millions): number of the parameters
of the decoder. Time: time necessary top build a full size CAM over an idle Tesla P100 GPU for one random RGB image
of size 224× 224 with 200 classes. Methods SSCAM [10] (N = 35, σ = 2), IS-CAM [9] (N = 10), IS-CAM [9] (N = 10)
are evaluated with batch size 32 with their original hyper-parameters (N, and σ).

CUB OpenImages
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean

CAM [20] 26.8 61.8 58.4 49.0 67.3 36.6 72.6 58.8
HaS [13] 70.9 69.9 74.5 71.8 60.0 68.4 74.0 67.5
ACoL [18] 56.1 71.6 64.0 63.9 68.2 40.7 70.7 59.9
SPG [19] 63.1 58.8 37.8 53.2 71.7 43.5 65.4 60.2
ADL [3] 31.1 45.5 32.7 36.4 66.1 46.6 56.1 56.3
CutMix [17] 29.2 70.2 55.9 51.8 68.1 53.1 73.7 65.0

CAM* [20] 49.3 65.5 65.1 59.9 69.1 61.2 73.2 67.8
GradCAM 24.8 65.4 42.2 44.1 69.0 54.0 72.4 65.1
GradCAM++ 24.8 65.2 42.2 44.0 70.3 69.6 72.3 70.7
Smooth-GradCAM 24.8 65.3 42.2 44.1 69.0 54.0 67.0 63.3
XGradCAM 24.8 65.4 65.1 51.7 69.0 69.4 72.0 70.1
LayerCAM 24.8 65.0 51.2 47.0 70.3 53.9 72.2 65.4

Table 5: Classification performance of WSOL baseline methods. Model selection is performed over localization performance
MaxBoxAcc and PxAP.



(a) CAM* (b) GradCAM

(c) GradCAM++ (d) Smooth-GradCAM++

(e) XGradCAM (f) LayerCAM

Figure 5: CAM’s activation distribution over CUB test set: WSOL baselines vs. WSOL baseline + ours validated with
MaxBoxAcc.



(a) CAM* (b) GradCAM

(c) GradCAM++ (d) Smooth-GradCAM++

(e) XGradCAM (f) LayerCAM

Figure 6: CAM’s activation distribution over OpenImages test set: WSOL baselines vs. WSOL baseline + ours validated
with MaxBoxAcc.



(a) CAM* (b) GradCAM

(c) GradCAM++ (d) Smooth-GradCAM++

(e) XGradCAM (f) LayerCAM

Figure 7: CUB test set: WSOL baselines vs. WSOL baselines + ours validated with MaxBoxAcc.



(a) CAM* (b) GradCAM

(c) GradCAM++ (d) Smooth-GradCAM++

(e) XGradCAM (f) LayerCAM

Figure 8: OpenImages test set: WSOL baselines vs. WSOL baselines + ours validated with MaxBoxAcc.



(a) CAM* (b) GradCAM (c) GradCAM++

(d) Smooth-GradCAM++ (e) XGradCAM (f) LayerCAM

Figure 9: Convergence of classification and localization tasks over validation set over baselines WSOL methods. The red dot
is the epoch for the selected model based on the localization performance using MaxBoxAcc metric over validation set.



Figure 10: CAM* method examples for three backbones (left to right: VGG16, Inceptionv3, ResNet50): baselines (top) vs.
baseline + ours (bottom) validated with MaxBoxAcc. Colors: CUB (left): green box : ground truth. red box: predicted. red
mask: thresholded CAM. OpenImages (right): red mask: true positive. green mask: false negative. blue mask: false positive.
τ = 50, σ = 0.8.



Figure 11: GradCAM method examples for three backbones (left to right: VGG16, Inceptionv3, ResNet50): baselines (top)
vs. baseline + ours (bottom) validated with MaxBoxAcc. Colors: CUB (left): green box : ground truth. red box: predicted.
red mask: thresholded CAM. OpenImages (right): red mask: true positive. green mask: false negative. blue mask: false
positive. τ = 50, σ = 0.8.
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