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A. Appendix

A.1. Calculation of OOD Score

To extract an OOD score, FOOD creates a copy of a
trained DNN model and replace the last fully-connected
layer with a Gaussian likelihood layer. Usually, the DNN
model is trained for a few more iterations to optimize the
weights of the final layer [2]. To make it more lightweight
and enable its integration, we adjust the technique such that
it can be integrated in any workflow of an age prediction
system without requiring additional training.

The final Gaussian likelihood layer receives the output of
the penultimate DNN model layer as input. The penultimate
layer is commonly used for analysis, as it contains the most
processed information without limiting the feature space.
With the help of the Gaussian layer, the data is represented
as a multivariate Gaussian with two parameters: a center vec-
tor and a co-variance matrix. Given our adjustment, those
two parameters can be directly calculated based on the train-
ing data for each class. For the class c and penultimate
representations of the dataset X , we calculate the center µc

and the co-variance Σc as follows:
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with the d-dimensional penultimate representation, whereN
stands for the multivariate Gaussian distribution, as shown
in Equation 3.
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The closer a sample is to the class center, the higher the
confidence that the input belongs to a certain class and to the
trained distribution.

We calculate the OOD scores using a log-likelihood ratio
(LLR) test on the subtraction of two log-likelihood scores
(Equation 4). The test takes the probability ratio between
the log of the predicted class and the logs of the unpredicted
classes, where K represents the group of the k class indices
which do not belong to the ground truth and have the top
likelihood scores ŷ.

LLR = max
c∈{1,...,C}

f(x|µc; Σc)−
1

k

∑
i∈K

f(x|µk; Σk) (4)

The test provides an estimate that measures how far away
the sample is from its predicted class in the penultimate
representation. Samples that are too far away from their
predicted class relative to other classes are given a low LLR,
which translates into a high OOD score.

A.2. Generalization Datasets

Neither the CACD [4] or the AFAD dataset[13] are in-
tegral to the training or testing set; both show difference in
style to the training and testing set and are collected by dif-
ferent sources. The CACD contains 163, 446 facial images
of 2, 000 celebrities; for the AFAD, we opt to use the light
version which contains 60, 000 facial images collected from
various Internet sources. Table A1 shows the summary of
all the datasets we used. The preprocessing workflow was
applied to both datasets before testing (Section 4.1).

A.3. Calculation of Fairness Score

FunctionK (Equation 7) is an indicator function that indi-
cates fairness for one sensitive feature pair sj and sk (k 6= j)
when the average predicted ages P (sj |yi) and P (sk|yi) are
close enough to each other defined by threshold t divided by
2 given the absolute value. P (sj |yi) represents the average



Table A1: Summary of datasets.

Name Purpose Size Related Work
IMDB-WIKI Pretraining 636,022 [14, 20, 21]
MORPH-2 Curation&Augmentation 55,000 [20, 21, 19, 10]

APPA-REAL Curation&Augmentation 7,591 [1, 7, 10]
UTKFace Curation&Augmentation 20,000 [23, 9]

Mega Asian Curation&Augmentation 40,000 [22, 19]
AFAD Validation 164,432 [13, 5]
CACD Validation 163,446 [4, 17, 14]

predicted age at sensitive feature sj , given actual age yi.
Function F is another indicator function that indicates for
age yj , if the distance of average predicted age of every pair
of sensitive features are close enough to each other. There-
fore, F represents the overall distribution of how often the
DL system performs fairly one age. Finally, p summarised
all ages by taking the ratio of those ages which were consid-
ered fair by F and all ages together.

p =
1

n

n∑
i=1

F (yi|s) (5)
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∑
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t

2
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A.4. Comparison of Augmentation Approaches

In prior research, data augmentation has been assessed by
identifying which augmentation types produce sufficiently
diverse data for a DL system. [8] studied different sets
of augmentation combinations to maximize diversity [8],
named AutoAugment, which is used in various prior re-
search [16, 15, 12]. In the field of contrastive learning, it
was found that some augmentations are beneficial when
combined while others are not [6]. As a result, the authors
propose an augmentation setting used in contrastive learning
to minimize the distance among augmentations from the
same images while maximizing the distance among different
images to determine best augmentation practices. This aug-
mentation type is named SimCLR. The third augmentation
type utilizes both affine and color augmentations and follows
prior research [3, 18, 11] by empirically assessing the bound-
aries of individual augmentations to control the diversity
and realism, named Fine-grained. Figure 1 shows the differ-
ences among different augmentation types. Table A2 shows
that Fine-grained method performs the best among all the
settings and we mainly opt for this augmentation techniques.

Original FineGrained AutoAugment SimCLR

Figure 1: Example augmentations depending on augmenta-
tion type.
Table A2: Augmentation results comparing no augmentation
setting to the presented augmentation types in Section 4.4.

Type CACD↓ AFAD↓ Ethnicity↑ Gender↑
None 4.77 7.11 70.50 81.00

Fine-grained 4.53 7.01 73.50 80.00
AutoAugment 5.04 7.30 69.50 74.00

SimCLR 4.58 7.04 72.00 69.00

A.5. The pesudocode of data curation

Algorithm 1: Curating a diverse and sensitive fea-
ture balanced dataset

Result: Curated dataset
1 num sample←Sum of number of samples from all

datasets by class C and state S;
2 sort(num sample by s);
3 max sample←

min{quantile(num samplec,s, 0.8)|s ∈ S};
4 min sample←

max{quantile(num samplec,s, 0.2)|s ∈ S};
5 for all c ∈ C do
6 threshold← min{num samplec,s|s ∈ S};
7 threshold←

min(max sample,max(min sample, threshold));

8 ds num← number of datasets;
9 select size← threshold/ds num;

10 for all s ∈ S do
11 sort(D,c,s);
12 for all d ∈ D do
13 num←length of dc,s;
14 if num < select size then
15 select all data in dc,s;
16 remain← select size− num;
17 update(select size, remain) ;
18 else
19 random select(dc,s, select size);
20 end
21 end
22 end
23 end



A.6. Cross-analysis results

Table A3: Individual cross-analysis results retrieved on prior
research DL age prediction system approaches (Section 4.2).

DNN Train Test MAE↓

AlexNet

APPA

APPA 7.6
Megagsian 11.8
MORPH 6.5
UTKFace 7.7
Average (others) 8.6

Megagsian

Megagsian 3.6
APPA 11.5
MORPH 8.3
UTKFace 9.4
Average (others) 9.7

MORPH

MORPH 2.9
APPA 11.7
Megagsian 9.4
UTKFace 10.6
Average (others) 10.5

UTKFace

UTKFace 5.3
APPA 9.6
Megagsian 8.3
MORPH 7.9
Average (others) 8.6

DEX VGG

APPA

APPA 7.0
Megagsian 12.2
MORPH 6.4
UTKFace 7.9
Average (others) 8.8

Megagsian

Megagsian 6.5
APPA 11.4
MORPH 7.3
UTKFace 10.7
Average (others) 9.8

MORPH

MORPH 2.5
APPA 10.6
Megagsian 8.4
UTKFace 10.0
Average (others) 9.7

UTKFace

UTKFace 5.2
APPA 8.4
Megagsian 7.8
MORPH 6.4
Average (others) 7.5

References
[1] E Agustsson, R Timofte, S Escalera, X Baro, I Guyon, and R

Rothe. Apparent and real age estimation in still images with
deep residual regressors on appa-real database. In 12th IEEE
International Conference and Workshops on Automatic Face
and Gesture Recognition (FG), 2017. IEEE, 2017.

[2] Guy Amit, Moshe Levy, Ishai Rosenberg, Asaf Shabtai, and
Y. Elovici. Food: Fast out-of-distribution detector. 2020.

[3] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu,
Chi Xu, and Jianjun Zhao. Cats are not fish: Deep learning
testing calls for out-of-distribution awareness. In The 35th
IEEE/ACM International Conference on Automated Software
Engineering, New York, NY, USA, 2020. Association for
Computing Machinery.

[4] Bor-Chun Chen, Chu-Song Chen, and Winston H. Hsu. Cross-
age reference coding for age-invariant face recognition and
retrieval. In Proceedings of the European Conference on
Computer Vision (ECCV), 2014.

[5] Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, and
Mike Rao. Using ranking-cnn for age estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5183–5192, 2017.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020.

[7] A. Clapés, G. Anbarjafari, O. Bilici, D. Temirova, E. Avots,
and S. Escalera. From apparent to real age: Gender, age,
ethnic, makeup, and expression bias analysis in real age esti-
mation. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 2436–
243609, 2018.

[8] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay
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