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Abstract

This supplementary material includes more dataset de-
tails and initial preprocessing steps. Also, this material fur-
ther extends our analysis and provides the reasoning be-
hind choosing a specific loss criterion, i.e., Shared Learn-
ing Loss instead of RL or XE. After that, we grounded our
empirical selection of η to balance XE and RL loss in the
Shared Learning Loss. Further studies include analysis of
using other pre-trained models for feature extraction and
impact on our results. We have performed two experiments
to demonstrate our model’s robustness, analyzing results on
shuffling feature sets and evaluating VSLAN performance
after applying a similar feature set multiple times. The final
experiment was on cross-dataset, where we trained VSLAN
on one dataset, e.g., MSVD, and tested on MSR-VTT (and
vice-versa) to evaluate performance consistency.

1. Dataset Details and Preprocessing
We evaluate VSLAN on MS Research Video Description

(MSVD/ YouTube2Text) [2] and MSR-VTT [7].
MSVD/YouTube2Text [2]: This dataset contains 1970
singular-activity, short YouTube open domain video clips
in total. Each clip comprises an average of 9.6 seconds
of videos and has around 40 multilingual, human-annotated
captions. We use only the English language corpus, which
has a 12,594 vocabulary size. For experimental setup, ac-
cording to the prior works [6], we split the dataset as 1200
clips for training, 100 for validation, and 670 for the test.
MSR-VTT [7]: This is the largest video captioning dataset
till date, with respect to number of videos, domain diversity,
and the vocabulary size. The dataset contains 10,000 video
clips out of 7,180 videos, categorized into 20 contexts. The
average clip duration is 14.8 seconds, and each clip holds
20 single sentences, comprising a total of 200,000 sentences
and 29,316 corpus vocabulary sizes. According to the rec-

ommended setup by [7], we use 6,513 clips for training, 497
for validation, and 2,990 for testing.
Data Preprocessing: Firstly, we convert the sentences of
both datasets into lower-case, truncated punctuations, and
tokenized them based on singular space. Next, We select
9,657 most frequent words from the vocabulary of MSVD
and 23,500 for MSR-VTT. Later, we index the captions
based on the refined vocabulary indices. Additionally, we
append unknown token < u > to the vocabulary to index
the words not present within the range. We append start
< b >, end < e > tokens at the beginning and end of each
caption. During training, maximum sentence length U is set
according to the highest U for the entire batch. Shorter sen-
tences are padded with < p >. For the inference stage, we
set the maximum sentence length U to 25 for both datasets.
We apply NLTK 1 tool on the processed sentences to extract
POS data for training our POS encoder network, VaPEn.

2. Visual Analysis of Model Convergence
2.1. Impact of loss calculation methods

In Figure 1, we can see a comparison of loss values up to
50 epochs of each method we discussed in the main paper.
We can see some interesting insights from the plot. First
of all, the Cross-Entropy (XE) loss is very high initially,
and it converges over time, but not better as the Reinforce-
ment Learning (RL) loss. As mentioned earlier, XE loss
emphasizes the sentence structure, whereas RL loss focuses
on each sentence’s meaning with entailment rewards. For
this reason, the convergence rate of RL loss is faster than
XE. However, we can notice an interesting phenomenon in
Shared Learning (which combines both XE and RL). For
this reason, from the initial step, the combined loss picks
essential information from both losses, and the loss con-
verges faster. Also, this loss is relatively stable compared to
XE and RL. During the 24 epoch, the model achieved the

1https://www.nltk.org
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Figure 1. Comparison of the loss values (lower is better) upon each
training epoch for each of the methods
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Figure 2. Comparison of the loss values (lower is better) upon each
training epoch for each of the methods

lowest loss, and the Shared Learning Loss increased later.
This phenomenon occurred because of the instability of the
RL training [5], which is still an open problem.

2.2. Impact of η

In the earlier section, we have visualized the loss func-
tions’ performance and noted that Shared Learning loss
converges best. However, as mentioned in the main pa-
per, we empirically picked η = 0.3 for all further experi-
ments. Our reason behind this empirical selection of η can
be demonstrated by Figure 2. Here, we can see that when
we select a lower value of η, the model weights more on
the RL loss than the XE. As discussed in the earlier sec-
tion regarding the instability of RL, the overall loss is also
high. However, once we increase the value of η, the model
becomes more stable, and for η = 0.3, we have the lowest
loss. Although increasing η further increases the loss, it is
not so high as RL because XE loss is relatively more stable
than RL.

From these two analyses above, we can note that al-

though RL loss helps is faster convergence, it alone can not
guarantee the best performance. The combined approach of
RL and XE with a proper η can be a wise selection.

3. Ablation Studies
We benchmark VSLAN by four additional experiments.

3.1. Impact of Sophisticated Pre-trained Models

We have evaluated VSLAN on four main feature sets,
ResNext-101, C3D, VGG-16, and Faster-RCNN, to have
identical feature sets with the compared methods. Here we
will re-evaluate VSLAN on some more sophisticated 3D
CNN visual features, SlowFast [3], and I3D [1]. ResNext-
101 [4] exploits residual network with extended convo-
lutional filter, where I3D inflates two-dimensional kernel
into three and passes through the layers. For the experi-
ments, we use the non-local version of the I3D pre-trained
model on the Kinetics-400 dataset. SlowFast is a relatively
newer approach, which splits a video clip into two streams,
’slow’ and ’fast,’ to capture the latent action properties. The
’slow’ stream incorporates the spatial features, and the ’fast’
stream represents the temporal features.

In Table 1, if we replace the 2D CNNs (VGG-16 and
Faster R-CNN) with I3D and SlowFast, we can notice a sig-
nificant performance drop. This is because VSLAN relies
on object-related information (a core component of Faster
R-CNN) alongside actions for generating a sentence. As no
object-based 2D CNN models are not present in the second
row of Table 1, the performance plummets. In this regard,
if we replace I3D with Faster R-CNN, we notice a dramatic
improvement in almost all matrices. Further, if we replace
C3D with I3D, we can not notice any significant increment
in the results. From here, we can note that VLAN dis-
tills information from 2D and 3D CNNs, and a fair balance
between these may result in the best performance. Also,
we claim that regardless of the visual features, the perfor-
mance pattern was identical in both MSVD and MSR-VTT
datasets. In further analysis, we set L0= ResNext-101, L1=
Slowfast, L2=I3D, and L3= Faster R-CNN.

3.2. Shuffle Feature Set Order

In this experiment, we shuffle the order of features L0−3

to verify the robustness of the attention sub-networks. Other
than the default order, L(0,1,2,3), we analyze the effects
of scores on 4 distinct orders mentioned in Table 2. For
L(3,1,2,0), where the model starts learning from R-CNN,
drops CIDEr score by 3.5%. This phenomenon can be ex-
plained by the relative attention distribution of the model,
which prioritizes object information and loses action syntax
during caption generation. Because, L(1,0,2,3) yields bet-
ter performance by 0.91% due to setting SlowFast at the
initial stage. Second, depending widely on action represen-
tation, then leveraging object features can reduce the over-
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MSVD MSR-VTT

Model B@4 M C R B@4 M C R

RN, C3D, V, Faster R-CNN 57.4 36.9 98.1 75.6 46.5 32.8 55.8 62.4
RN, C3D, I3D, SlowfFast 54.9 35.1 89.8 73.1 42.2 30.8 53.9 59.8

RN, C3D, SlowFast, Faster R-CNN 57.8 37 98.2 75.7 46.5 33.1 56.5 62.9
RN, SlowFast, I3D, Faster R-CNN 58 37.1 98 76 46.8 33.7 56.9 63

Table 1. A relative comparison of the impact of pre-trained CNN models on VSLAN performance. RN is ResNext-101

all score. We note that L(2,0,1,3) propagates I3D followed
by ResNext-101, which lowers the performance due to hav-
ing two back-to-back object-rich information, SlowFast,
and Faster R-CNN. Considering the drawback, in L(0,3,2,1),
when we set SlowFast at the last stage, we notice a slight
score gain by 0.18%. Due to holding rich spatial and tem-
poral features, SlowFast fine-tunes both subject and action
representation before sending features to the decoder.

3.3. Analysis on Similar Feature Set Stacking

To this extent, in the last 4 rows of Table 2, we analyze
the performance of SlowFast by stacking up layers with
redundant SlowFast feature information. We notice that,
though adding similar features over the layers, the scores
slightly increase up to 3 stacks. This output can be ex-
plained by higher-order feature interaction by bilinear pool-
ing, which captures relevant information even with redun-
dant data. However, due to model over-fitting, stack size
4 downgrades the overall scores, which is an open prob-
lem exploring the trade-off between dataset and model com-
plexity. Interestingly, when multiple feature extractors were
added, the performance climbed up. From here, we can in-
fer that the FAN discounted the redundant visual features.
In addition, the mBleu-4 column indicates the caption di-
versity of the models. We see that L(0,3,2,1) achieves the
highest result due to an appropriate setting for the VaPEn.

Model B@4 M C R mBleu-4

Shuffled Order of Feature Sets (LAN decoder is present)

VSLANfull - L(3,1,2,0) 45.8 32.4 54.9 61.6 0.65
VSLANfull - L(1,0,2,3) 46.1 33.9 55.4 62 0.67
VSLANfull - L(2,0,1,3) 45.9 32.3 54.7 62.1 0.65
VSLANfull - L(0,3,2,1) 47 33.7 57 63.1 0.63

Single Feature Set (SlowFast) with Identical Layer Stack

VSLANL1 (SlowFast) ×1 40.5 27.7 45.1 58.8 0.71
VSLANL1 (SlowFast) ×2 42.2 29.4 48.9 59.2 0.69
VSLANL1 (SlowFast) ×3 43.8 30.6 50.3 57.5 0.69
VSLANL1 (SlowFast) ×4 43.1 30.2 49.4 57.2 0.68

Table 2. Comparison of shuffled feature sets of VSLAN (first 4
rows) and stacked layer with identical SlowFast features

3.4. Cross-Dataset Analysis

With this analysis, our main goal is to make a statement
that VSLAN trained model is consistent for ‘out-of-dataset’
information. For example, we expect to have a stable per-
formance on the MSR-VTT test set even if we train VSLAN
on the MSVD dataset (and vice-versa). If the performance
on VSLAN is consistent, we can claim that the inherent
model is learning to generate captions that will not be re-
stricted to the trained dataset only. Table 3 visualizes the
performance on cross-dataset. Interestingly, when we train
on MSR-VTT and test on MSVD, we have a higher score
gain than training on MSVD. This is because the MSVD
dataset is smaller, and the number of captions per video
in MSR-VTT is higher than MSVD. However, compared
with the existing methods’ outcomes, we can see that VS-
LAN outperforms POS-CG on MSR-VTT by 3.8% CIDEr
and MSVD by 3.6%. This phenomenon can also be noted
for the other two methods. Although compared models uti-
lize multiple and identical features set by VSLAN, they fall
short in the inherent architecture that VSLAN utilizes to
combine those feature sets for robust performance.

4. Conclusion
We have performed a comprehensive evaluation of VS-

LAN from several aspects and grounded the stability of our
method with the experimental outcome. Moreover, we have
attached the code file for a sample reproduction of Table 2’s
row 5.

Model B@4 M C R

The Output on MSVD Dataset Test Set with Training on MSR-VTT

RecNetlocal 53.5 35.4 85.9 71.6
GRU-EVE 50.1 36.5 81.8 72
POS-CG 56.5 36.8 95 74.7
VSLAN (ours) 58.1 37.5 98.6 76.4

The Output on MSR-VTT Dataset Test Set with Training on MSVD

RecNetlocal 35 24.3 37.5 50.2
GRU-EVE 33.8 25.1 41.8 51.7
POS-CG 36.1 25.8 44.3 55.1
VSLAN (ours) 38.6 26.9 45.9 57.4

Table 3. Cross-Dataset comparison with the closest competitors of
VSLAN that use multiple feature streams
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