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A. Hyperparameters and training configura-
tions

Datasets settings. For global movement experiments in
Section 4.2 , which included NTU RGB+D [6] and NTU-
120 RGB+D [5] datasets, the temporal length of the skele-
ton sequences was normalized to t = 64 frames. The reason
behind the chosen temporal length resides in the action ex-
ecution average of the dataset (64 frames). Despite both
datasets containing some annotation errors (some inaccu-
rate 3D joints position), no sample filtering was applied.
We confirm the superiority of our method in action con-
ditioning by using every action class in both datasets (60
for NTU RGB+D and 120 for NTU-120 RGB+D). For lo-
cal movement experiments in Section 4.3 , which included
Human3.6M [3] and NTU-2D RGB+D [6] datasets, the
same settings were applied as previous approaches [2, 7, 8].
Specifically, the temporal length was normalized to t = 50
frames, the number of action classes used are 10, and both
datasets were normalized from real/global movement to lo-
cal movement, which facilitates the generation process. In
Human3.6M [3] dataset, the following action classes are
used: sitting, sitting down, discussion, walking, greeting,
direction, phoning, eating, smoking and posing. In NTU-
2D RGB+D [6] dataset, the following action classes are
used: drinking water, jump up, make phone call, hand wav-
ing, standing up, wear jacket, sitting down, throw, cross
hand in front and kicking something. Also, for a fair com-
parison, training samples from NTU-2D RGB+D [6] were
carefully selected from each class on NTU RGB+D [6] sim-
ilar to previous methods [2, 7, 8].

Training configurations. We train the networks us-
ing Adam [4] optimizer with α = 2 × 10−4, β1 = 0.5,
β2 = 0.999 and ϵ = 10−8 for all datasets with a minibatch
size of 32. Since we rely on the WGAN-GP loss [1], we
set ncritic = 5, which sets the number of iterations of the
discriminator per generator iteration.

Upsampling and downsampling details. As illustrated
in Fig. 3 (paper), the spatial resolution of the skeleton

is increased from the intermediate latent point as 1 →
5 → 11 → 25 joints for the NTU RGB+D [6], NTU-2D
RGB+D [6] and NTU-120 RGB+D [5] datasets. For the
Human3.6M [3] dataset the spatial resolution is increased
as 1 → 2 → 7 → 15 joints. In all datasets, the temporal
resolution is increased by doubling t/16 until reaching the
dataset’s temporal length t. The same resolutions reversed
are applied for the downsampling paths in the discriminator.

Mapping network structure. Our non-linear mapping
network comprises fully connected layers with 512 as the
dimensionality of the input and output activations. As
demonstrated in Table 2 , the increasing number of different
subjects in the training data results in a more complex latent
representation requiring a deeper mapping network. For this
reason, we set 6 layers for the Human3.6M [3], and 8 layers
for the NTU-120 RGB+D [5] dataset. NTU RGB+D and
NTU-2D RGB+D [6] datasets follow the same settings as
studied in Table 2 .

Noise injection details. The noise injector described in
Section 3.4.1 samples a random noise rl using N (0, 1).
Each joint at resolution level l has a respective weight to
each channel and receives a different noise added channel-
wise. This operation is applied to every generator’s layer.

B. Action complexity

We include several action samples synthesised by our
graph convolutional generator that demonstrate various as-
pects related to action complexity (see also accompanying
video). Apart from the ability to generate up to 120 differ-
ent action classes, we are able to generate global (real) body
movement in 3D space, which, to the best of our knowledge,
such complex actions under global movement settings had
proven to be uncharted territory for previous methods. Fig-
ure 1 shows different action examples illustrating the detail
and expressiveness achievable using our method in NTU
RGB+D [6]. In Figure 2, we demonstrate the ability to
generate desired actions among 120 different classes from
NTU-120 RGB+D [5].



Figure 1: Synthetic set of actions generated by our graph
convolutional generator trained on NTU RGB+D [6].
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