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1. Introduction
This supplementary material contains extra information

and resources that complement the paper and enable the re-
production of all our results, as listed below.

• Additional information regarding the experiments pre-
sented in the main paper.

• Complete comparison tables including all previous Se-
mantic Scene Completion (SSC) approaches that we
are aware of.

• Additional figures with images for a qualitative evalu-
ation of the results on the three evaluated datasets.

• Source code (see README.md file).

2. Additional experimental details about the
semantic segmentation method

To produce the results presented in the main paper, we
trained two different 2D semantic segmentation networks.
The results of the “depth + RGB” models presented in the
ablation study were produced using a simplified version of
RefineNet [8] (single-mode) which architecture is shown in
Figure 6. The results of the “depth + RGB + surface nor-
mals” models presented in the ablation study and in the re-
sult tables were produced using a bimodal 2D segmentation
network. Its architecture was presented in the paper. For
convenience, we show it here again in Figure 7.

The main difference between these two networks is the
addition of surface normals as a second input mode and
a corresponding second pre-trained ResNet-101 backbone.
MMF modules are also added to combine the features from
the two modes.

Figure 8 presents the learning curves of the two models
regarding the fine-tuning stage of training. In that stage,
the ResNet backbones weights are unfrozen. Note that the
bimodal model takes a little longer to stabilize compared
to the single-mode one. This is somewhat expected, since
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Figure 6: 2D single-mode segmentation network archi-
tecture. This is a simplified version of RefineNet [8].
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Figure 7: 2D bimodal segmentation network architec-
ture. This is in the main paper as Figure 3 and it is shown
here again to facilitate comparison with the unimodal net-
work of Figure 6. The Residual Convolution Unit (RCU)
and the RefineNet module were first defined in [8]. Here,
we use a simplified MMF block [10].

the ResNet-101 backbones are pre-trained on RGB images,
and the surfaces normals represent a completely different
domain. However, the bimodal model achieves a better vali-



dation final score, even though the train mIoU of the single-
mode model is better. This indicates that adding surface
normals as input helps reduce model overfitting.
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Figure 8: Learning curves of the fine-tune stage of 2D
segmentation networks on NYDv2 (no pre-training on
SUNCG).

In Table 5 we present the semantic segmentation results
of the 2D models. As expected, the better learning curve of
the bimodal network leads to better per class results.

3. Overfitting reduction using the proposed
data augmentation approach

Figure 9 presents the training and validation learning
curves of SPAwN on NYUDv2, with and without data aug-
mentation. Note the inversion of the positions of the red
and blue curves when data augmentation is used. Although
the regular train curve (blue/dashed) reaches a higher score
at the end of the training when compared to the data aug-
mented curve (red/dashed), the final data augmented score
in validation (red/solid) is higher than the regular curve
(blue/solid). This indicates overfitting reduction due to data
augmentation.

Also note that regular training starts overfitting around
the 76th epoch, while the data augmented validation score
keeps raising until the 118th epoch. This indicates that
training can go on for more epochs to reach better results
using our data augmented models.

4. Complete comparison tables
Tables 6, 7, and 8 complement Tables 2, 3 and 4 of the

main paper (respectively) and compare our results to all
the competing SSC solutions that we are aware of. Note
the superiority of our method among all straight-forward
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Figure 9: Learning curves of the training on NYUDv2
with and without data augmentation (no pre-training on
SUNCG).

methods. It is worth mentioning that our data augmentation
strategies can be applied with other methods, such as the
SISNet, certainly leading to further improvement.

5. Additional Qualitative Analysis
Figures 10, 11, and 12 complement Figure 7 of the main

paper by presenting additional results for a qualitative anal-
ysis on SUNCG, NYUDv2, and NYUCAD, respectively.
Each row of the figures corresponds to one scene. From top
to bottom, we present images of RGB image, depth map,
surface normals, 2D predictions (obtained with our bimodal
semantic segmentation network), projected visible surface,
projected semantic priors, SSC predictions (obtained by our
method), and 3D ground truth.

Figures 10 and 12 show that our method benefits
from the excellent semantic segmentation results, guiding
SPAwN to generate outstanding semantic scene completion
results, filling the gaps left by simply projecting semantic
priors to 3D. In SUNCG, both RGB and depth maps come
from synthetic 3D models of the scenes, so the 2D segmen-
tation results approach perfection. Segmentation results are
also excellent in NYUCAD, even though the RGB images
come from real scenes and there is a level of mismatch be-
tween depth maps and RGB textures (see the chairs and the
bookshelf on the fourth column of Figure 12). The surface
normals have certainly played an essential role in the qual-
ity of our bimodal segmentation CNN.

In Figure 11, the first column shows that specular sur-
faces give poor surface normals, and saturation corrupts
RGB information. These specular surfaces have perturbed
the segmentation priors and generated a poor 3D prediction
for the whiteboard. On the other hand, the fourth column
of that figure shows that our method has correctly identified
the blackboard surface as “objects”, even though that region



training model 2D RGB-D semantic segmentation (IoU, in percentages)
set ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

NYUDv2 Single-mode 64.1 83.8 75.7 62.5 75.0 62.8 58.3 38.9 52.2 57.1 54.4 60.6
Bimodal 73.3 89.2 76.7 62.9 63.4 67.6 62.1 40.3 56.7 58.7 55.5 64.2

SUNCG →
NYUDv2

Single-mode - - - - - - - - - - - -
Bimodal 74.6 90.6 77.4 64.7 64.2 72.0 62.9 43.8 54.5 58.7 56.7 65.5

Table 5: Semantic segmentation results of 2D models on NYUDv2 test set. For each model we show per class segmentation
IoU and the average score. The bimodal network is superior in average and in most of the classes. We did not test fine-tuning
from SUNCG in single-mode setup.

model
pipeline

type
scene completion semantic scene completion (IoU, in percentages)
prec. rec. IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SISNet-BiSeNet [1] iterative 93.3 96.1 89.9 85.2 90.0 83.7 80.8 60.0 83.5 80.8 68.6 77.3 86.7 70.1 78.8
SISNet-DeepLabv3 [1] 92.6 96.3 89.3 85.4 90.6 82.6 80.9 62.9 84.5 82.6 71.6 72.6 85.6 69.7 79.0

SSCNet[11]

straight-
forward

76.3 95.2 73.5 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
TNetFuse[9] 53.9 95.2 52.6 60.6 57.3 53.2 52.7 27.4 46.8 53.3 28.6 41.1 44.1 29.0 44.9
DCRF[14] - - - 95.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8

ForkNet[12] - - - 95.0 85.9 73.2 54.5 46.0 81.3 74.2 42.8 31.9 63.1 49.3 63.6
VVNet[6] 90.8 91.7 84.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7

EdgeNet[3] 93.3 90.6 85.1 97.2 95.3 78.2 57.5, 51.4 80.7 74.1 54.5 52.6 70.3 60.1 70.2
ESSC[13] 92.6 90.4 84.5 96.6 83.7 74.9 59.0 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5

CCPNet[15] 98.2 96.8 91.4 99.2 89.3 76.2 63.3 58.2 86.1 82.6 65.6 53.2 76.8 65.2 74.2
SPAwN (ours) 91.9 88.7 82.3 99.3 96.1 84.4 75.1 59.2 81.5 78.1 67.3 80.1 76.3 70.4 78.9

Table 6: Results on SUNCG test set. Our SPAwN semantic scene completion overall results with regular training (not
augmented) surpasses by far all known previous solutions on SUNCG synthetic images with straightforward pipeline and
gets close to much more complex SISNet models (complementing Table 2 of the main paper).

was incorrectly labeled as “wall” in the ground truth.

6. Source code and models
To enable the reproduction of all our results, including

rendering of resulting images for qualitative analysis, we
provide all source code developed for this paper, along with
pretrained model weights of the most important results.

The source code is available here: https://cic.
unb.br/˜teodecampos/aloisio/. Detailed in-
structions can be found in the README.md file.

https://cic.unb.br/~teodecampos/aloisio/
https://cic.unb.br/~teodecampos/aloisio/


model
pipeline

type train scene compl. semantic scene completion (IoU, in percentages)
prec. rec. IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SISNet-BiSeNet[1] iterative NYU 90.7 84.6 77.8 53.9 93.2 51.3 38.0 38.7 65.0 56.3 37.8 25.9 51.3 36.0 49.8
SISNet-DLabv3[1] 92.1 83.8 78.2 54.7 93.8 53.2 41.9 43.6 66.2 61.4 38.1 29.8 53.9 40.3 52.4

SSCNet[11]

straight-
forward NYU

57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
ESSCNet[13] 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7
EdgeNet[3] 76.0 68.3 65.1 17.9 94.0 27.8 2.1 9.5 51.8 44.3 9.4 3.6 32.5 12.7 27.8
DDRNet[7] 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4
DCRF[14] - - - 18.1 92.6 27.1 10.8 18.8 54.3 47.9 17.1 15.1 34.7 13.0 31.8
TS3D[4] - - 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1

CCPNet[15] 91.3 92.6 82.4 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5
SketchAware[2] 85.0 81.6 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1

SPAwN 82.0 74.2 63.8 36.3 94.0 38.3 26.1 33.7 61.2 54.8 25.1 35.0 43.5 29.6 43.4
SPAwN+DA 80.8 77.8 65.7 41.5 94.2 38.0 30.4 40.3 69.6 57.2 29.4 41.4 48.8 34.1 47.7

SPAwN+DA+TTDA 82.3 77.2 66.2 41.5 94.3 38.2 30.3 41.0 70.6 57.7 29.7 40.9 49.2 34.6 48.0

SSCNet[11]

straight-
forward

SUNCG
+

NYU

59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
CSSCNet[5] 62.5 82.3 54.3 - - - - - - - - - - - 30.5
DCRF[14] - - - 18.1 92.6 27.1 10.8 18.8 54.3 47.9 17.1 15.1 34.7 13.0 31.8
VVNet[6] 86.4 92.0 80.3 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9

TNetFuse[9] 67.3 85.8 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4
ForkNet[12] - - - 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
CCPNet[15] 78.8 94.3 67.1 25.5 98.5 38.8 27.1 27.3 64.8 58.4 21.5 30.1 38.4 23.8 41.3

SPAwN 77.6 82.6 66.7 47.3 93.4 41.3 28.9 41.6 69.5 57.1 33.1 30.9 50.9 35.0 48.1
SPAwN+DA 79.8 80.8 67.1 44.1 94.0 39.9 31.5 41.6 67.4 57.3 32.5 42.8 52.5 35.0 49.0

SPAwN+DA+TTDA 81.2 80.4 67.8 44.2 94.2 40.9 33.5 42.5 69.3 58.4 32.4 44.3 53.4 36.3 49.9

Table 7: Results on NYUDv2 test set . The column “train” indicates datasets used for training the models. SUNCG + NYU
means trained on SUNCG and fine-tuned on NYUDv2. In both scenarios, our SPAwN semantic scene completion overall
surpasses all known previous solutions with straightforward pipeline and gets close to much more complex SISNet models
(complementing Table 3 of the main paper).



model
pipeline

type train scene compl. semantic scene completion (IoU, in percentages)
prec. rec. IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SISNet-BiSeNet[1] iterative NYUCAD 94.2 91.3 86.5 65.6 94.4 67.1 45.2 57.2 75.5 66.4 50.9 31.1 62.5 42.9 59.9
SISNet-DLabv3[1] 94.1 91.2 86.3 63.4 94.4 67.2 52.4 59.2 77.9 71.1 58.1 46.2 65.8 48.8 63.5

DCRF[14]

straight-
forward NYUCAD

- - - 35.5 92.6 52.4 10.7 40.0 60.0 62.5 34.0 9.4 49.2 26.5 43.0
TS3D[4] 80.2 94.4 76.5 34.4 93.6 47.7 31.8 32.2 65.2 54.2 30.7 32.5 50,1 30.7 45.7

DDRNet[7] 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8
CCPNet[15] 91.3 92.6 82.4 56.2 96.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2

SketchAware[2] 90.6 92.2 84.2 59.7 94.3 64.3 32.6 51.7 72.0 68.7 45.9 19.0 60.5 38.5 55.2
SPAwN 83.7 87.2 74.6 64.0 94.6 61.4 33.3 63.1 80.4 72.8 47.6 44.0 64.0 42.7 60.7

SPAwN+DA 82.9 88.0 74.5 65.2 94.7 60.9 36.4 69.1 82.0 72.1 48.3 41.4 63.4 43.9 61.6
SPAwN+DA+TTDA 84.5 87.8 75.6 65.3 94.7 61.9 36.9 69.6 82.2 72.8 49.1 43.6 63.4 44.4 62.2

SSCNet[11]

straight-
forward

NYUCAD
+

SUNCG

75.4 96.3 73.2 32.5 92.6 40.2 8.9 40.0 60.0 62.5 34.0 9.4 49.2 26.5 40.0
CCPNet[15] 93.4 91.2 85.1 58.1 95.1 60.5 36.8 47.2 69.3 67.7 39.8 37.6 55.4 37.6 55.0

SPAwN 87.7 88.4 78.7 69.9 94.9 67.6 35.0 68.8 82.8 76.0 53.2 42.4 64.0 45.8 63.7
SPAwN+DA 84.8 90.0 77.6 76.1 94.9 67.2 37.8 67.2 81.7 76.8 55.7 49.9 65.3 46.1 65.3

SPAwN+DA+TTDA 86.3 90.1 78.9 77.6 95.0 68.0 38.1 67.9 82.2 77.1 56.8 50.0 65.7 46.5 65.9

Table 8: Results on NYUDCAD. Our SPAwN models hold the best and second-best overall results on both training scenarios,
when compared to previous straight-forward solutions. When fine-tuned from SUNCG, SPAwN surpasses both SISNet
models, which are much more complex than ours (complementing Table 4 of the main paper).
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Figure 10: Qualitative results on SUNCG. From top to bottom: RGB, depth, surface normals, 2D segmentation with our
bimodal CNN, visible surface, 3D priors, prediction with our SPAwN architecture, ground truth. (Best viewed in color.)
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Figure 11: Qualitative results on NYUDv2. From top to bottom: RGB, depth, surface normals, 2D segmentation with our
bimodal CNN, visible surface, 3D priors, prediction with SPAwN+S3P, Ground Truth. (Best viewed in color).
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Figure 12: Qualitative results on NYUCAD. From top to bottom: RGB, depth, surface normals, 2D segmentation with our
bimodal CNN, visible surface, 3D priors, prediction with our SPAwN+S3P, Ground Truth. (Best viewed in color.)
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