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A Rotate/flip procedure

To keep the number of experts limited, we exploit the symmetries in anisotropic kernels. For example,
by rotating the LR image by 90 degrees, we simulate a 90 degree rotated kernel. Figure 1 shows that
we can use a single expert network Uρ (trained with kernel parameters ρ) to upsample images with
rotated/flipped kernels. The blur kernel of each LR image is specified at the corner of that image.
Due to the rotation and mirror symmetries, we only require experts for kernels within a rotation angel
θ ∼ (0, π/4). For θ values outside of this range, we firstly rotate/flip the LR image as suggested in
Figure 1 and then upsample the image by pretrained expert. Finally, we rotate/flip back the upsampled
image to the normal position.
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Figure 1: Reduce the number of experts by rotation and/or flipping the input image.



B Kernels of pretrained experts

We use 25 specialized expert networks with kernel parameters in the range λ1, λ2 ∼ (0.6, 5) and
θ ∼ (0, π/4). Table 1 shows the kernel parameters for all networks. Last column demonstrates the θ
values applicable by rotate/flip procedure. For isotropic kernels (λ1 is equal to λ2), the rotation angel
θ is not important.

Table 1: Kernel parameters for all kernel-specific experts.

Index λ1 λ2 θ Applicable θ

1 0.8 0.8 0 any

2 1.5 0.8 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

3 1.5 0.8 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

4 1.5 1.5 0 any

5 2.3 0.8 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

6 2.3 0.8 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

7 2.3 1.5 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

8 2.3 1.5 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

9 2.3 2.3 0 any

10 3.2 0.8 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

11 3.2 0.8 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

12 3.2 1.5 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

13 3.2 1.5 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

14 3.2 2.3 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

15 3.2 2.3 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

16 3.2 3.2 0 any

17 4.4 0.8 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

18 4.4 0.8 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

19 4.4 1.5 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

20 4.4 1.5 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

21 4.4 2.3 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

22 4.4 2.3 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

23 4.4 3.2 π
16

π
16

, 7π
16

, 9π
16

, 15π
16

24 4.4 3.2 3π
16

3π
16

, 5π
16

, 11π
16

, 13π
16

25 4.4 4.4 0 any

C Fine-tuning using DualSR pipeline

We use DualSR [4] pipeline for fine-tuning. DualSR is a dual-path architecture that jointly trains an
image-specific downsampler (degradation kernel) and corresponding upsampler (expert network).
Unlike DualSR, we only train the upsampler. We replace the downsampler with our estimated kernel
K(ρ∗) and initialize the upsampler with the pre-trained expert U∗. The network is fine-tuned using
cycle-consistency losses and masked interpolation loss as explained in [4]. We extend the architecture
of DualSR to enable ×4 SR. The extended architecture is shown in Figure 2. We added an extra loss
term for the intermediate ×2 upsampled image (Lcycle3).
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Figure 2: The extended architecture of DualSR for ×4 SR. U∗
1 and U∗

2 are ×2 upsamplers initialized
by the best expert network and Dρ∗ is downsampling with the estimated kernel parameters ρ∗.

D Extra experiments

D.1 Number of experts in the ensemble

In our final model, the ensemble consists of 25 specialized expert networks. We also experiment with
ensembles of 6 and 49 experts. The average PSNR and run-time of different models are reported in
Table 2. It suggests that an ensemble of 25 experts can cover the whole kernel space. If time is a
limitation, an ensemble of 6 experts can still give acceptable accuracy.

Table 2: Analysis on number of experts in the ensemble. The average PSNR and run-time numbers
on DIV2KRK [1] dataset for ×4 SR are reported.

Method PSNR (dB) Run-time (sec)

MoESR with 6 experts 28.39 25.2
MoESR with 25 experts (final) 28.48 43.9
MoESR with 49 experts 28.45 70.4

D.2 Number of convolution layers for an expert

We use 12-layer convolutional networks in our final design. For comparison, we also report the PSNR
and run-time of 8-layer and 16-layer networks in Table 3.

Table 3: Analysis on number of convolution layers for each expert. The average PSNR and run-time
numbers on DIV2KRK [1] dataset for ×4 SR are reported.

Method PSNR (dB) Run-time (sec)

MoESR with 8-layer experts 28.41 34.2
MoESR with 12-layer experts (final) 28.48 43.9
MoESR with 16-layer experts 28.49 58.3

D.3 Comparison between direct and indirect upsampling for ×4 SR

As shown in Figure 2, we use two sequential 12-layer networks for ×4 SR where each network
upsamples the image with a scale of 2. However, we also experiment with a single 20-layer network
that upsamples the image with a scale of 4 directly. The average PSNR and run-time are reported
in Table 4. The indirect method (two sequential networks) provides better accuracy and is faster
compared to direct upsampling.
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Table 4: Direct vs indirect upsampling for ×4 SR. The average PSNR and run-time numbers on
DIV2KRK [1] dataset for ×4 SR are reported.

Method PSNR (dB) Run-time (sec)

MoESR direct upsampling 28.36 51.9
MoESR indirect upsampling (final) 28.48 43.9

Figure 3 shows the tradeoff between accuracy and run-time of different MoESR variations for ×4 SR.
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Figure 3: The average PSNR and running time for different MoESR variations on DIV2KRK.

E Visual comparison

Visual comparison between bicubic interpolation, KernelGAN [1] (+ ZSSR [7]), DAN [6], MoESR
(ours) and ground-truth images are demonstrated in Figures 4, 5 and 7.

GTBicubic KernelGAN DAN MoESRLR

Figure 4: Visual comparison of ×4 SR on DIV2KRK [1] images.
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GTBicubic KernelGAN DAN MoESRLR

Figure 5: Visual comparison of ×4 SR on Flickr2KRK [8] images.

GTBicubic KernelGAN DAN MoESRLR

Figure 6: Visual comparison of ×4 SR on Urban100RK [5] images.
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Figure 7: Visual comparison of ×4 SR on real-world images. The first two images are from
RealSR [3] and the last image is from Set5 [2].
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