Supplementary Material

A Deep Insight into Measuring Face Image Utility with General and Face-specific Image Quality Metrics

The Figures and Tables submitted in the supplementary material complement our submitted paper with the title "A Deep Insight into Measuring Face Image Utility with General and Face-specific Image Quality Metrics". The results in the main paper are sufficient to deliver the main messages of the paper. However, we present an extended set of results here to provide a wider and more detailed experimental view for the reviewers.

Figure 1 illustrates the error vs. reject characteristic (ERC) at a fixed false match rate (FMR) of 0.01, namely the FMR1000 for handcrafted image features (solid line, first row), learned image quality assessment (IQA) methods (dashed line, second row) and deep-learning-based (DL-based) face image quality assessment (FIQA) methods (solid line, second row) evaluated on the Biosecure database (DB). These figures go along with Figure 1 and Figure 2 from the main article (for the LFW and VGGFace databases). As the image quality of the Biosecure database is too good, no useful trend can be extracted from the ERC plot. Therefore, we only focused on depicting the ERC at FMR1000 for LFW and VGGFace2 databases in the submitted work.

Figure 2 and Figure 3 visualize the ERC at FMR100 (similar plots are shown for FMR1000 in the main article) for handcrafted features (Figure 2), learned IQA methods (dashed line, Figure 3) and DL-based FIQA methods (solid line, Figure 3) evaluated with the Biosecure, LFW, and VG-GFace2 database. A similar trend is observed as depicted in Figure 2 from the main article. The inter-eye distance reveals a strong correlation to the face image utility, especially for the uncontrolled VGGFace2. However, the overall performance of the feature-based FIQ is twice as bad as compared to the DL-based FIQA methods. A clear decreasing trend is observed for the IQA methods in the ERC in Figure 3. Even these methods are not superior compared to the DL-based FIQA methods, they still reveal a similar trend to the FIQA methods.

Table 1 completes Table 1 from the main article. The main article only provide the top-3 methods in each category to make an overall comparison across the bestperforming methods on LFW database. Here, it depicts the evaluation of all considered all 6 DL-based FIQA, 10 learned IQA, and the 7 feature-based FIQA methods for the false non-match rate (FNMR) at two reject ratios (20% and 40%) based on three FR models (ArcFace, SphereFace, Facenet) respectively. Handcrafted features and other learned IQA methods have similar behaviors, while learned FIQA methods still outperform other methods.

Similarly Table 2 also supplement Table 1 from the main article by listing the results of all methods considered in the main article. The table depicts the evaluation result on the VGGFace2. VGGFace2 is a more general database containing a large variety of uncontrolled face images. DL-based FIQA methods show clear dominance for this database across different settings. The inter-eye distance shows better performance compared to other individual handcrafted features, however is not consistently well-performing across different settings. Therefore, these hand-crafted features are less useful as to serve as a generalized and stable metric to relate to face image utility.

Table 3 depicts the evaluation result on the Biosecure database using all methods introduced in the main article. This is an additional table that is not provided in the main article. We shifted it to the supplementary material because the quality of the Biosecure is too good to provide useful insights regarding the research question posed in the main article. As already visible from the ERC plots, no error is made given the correct threshold due to the good quality images provided in the database. Therefore this table makes our analysis complete but does not offer additional useful findings on the posed research question from our main article measuring face image utility with general and facespecific quality metrics.

The matrix is showing the the ratio of overlapped samples between the samples with the lowest/highest 10% qualities as measured by two quality estimation methods (on the X and Y axes). The matrix in Figure 6 and 7 are build on data from LFW, and Figure 4 and 5 are using BioSecure database. These are provided to complete the results from igure 4 in the main article. A large ratio indicates a larger reasoning similarity between the considered pair of methods. As the image quality distribution is quite constrained and controlled for LFW and Biosecure, the results appear more homogeneously. The effectiveness of different methods is more obvious for VGGFace2 in the main article.

LFW at FMR 1000									
		ArcFace		Sphereface		Face	eNet		
		20%	40%	20%	40%	20%	40%		
DL-based FIQA	PFE	0.697	0.478	1.444	0.878	0.747	0.478		
	MagFace	0.741	0.479	2.126	1.118	0.840	0.638		
	SDD	0.603	0.412	2.160	1.073	0.853	0.495		
	FaceQnet	0.633	0.226	2.678	1.362	1.168	0.453		
	rankIQ	0.488	0.490	3.275	2.289	1.075	0.817		
	SER-FIQ(on Arcface)	0.983	0.725	3.837	2.903	2.152	1.741		
Image Quality	CNNIQA	1.015	1.048	4.264	3.930	2.385	2.183		
	NIQE	0.926	0.780	4.990	4.770	2.417	1.994		
	rankIQA	1.178	1.158	5.072	4.189	2.715	2.584		
	PIQE	1.136	1.146	5.165	5.444	2.738	2.578		
	MEON	0.959	1.280	5.300	5.892	2.725	3.159		
	dipIQ	1.159	1.049	5.331	5.228	2.921	2.887		
	BRISQUE	1.082	1.113	5.361	4.795	2.835	3.253		
	DBCNN	1.019	0.786	5.150	4.628	2.561	2.532		
	DeepIQA	1.159	1.140	5.424	5.228	2.738	3.041		
	UNIQUE	1.333	1.394	6.154	6.103	2.717	2.789		
Feature FIQA	inter eye dist	0.902	0.831	4.914	4.492	2.658	2.747		
	mean	0.532	0.558	3.728	3.272	1.798	1.915		
	sharpness	1.248	1.355	5.794	6.271	2.797	3.220		
	blur	0.847	0.831	4.337	3.993	2.442	1.497		
	contrast	0.860	0.796	4.709	4.424	2.025	1.946		
	sum exposure	0.620	0.780	4.293	4.423	1.914	2.428		
	symintersection	1.174	1.140	5.615	4.736	2.909	2.719		

LFW at FMR 100									
		ArcFace		Sphereface		Face	eNet		
		20%	40%	20%	40%	20%	40%		
DL-based FIQA	PFE	0.647	0.399	0.674	0.319	0.597	0.319		
	MagFace	0.692	0.479	0.790	0.559	0.642	0.559		
	SDD	0.552	0.412	0.753	0.412	0.652	0.412		
	FaceQnet	0.584	0.226	0.681	0.226	0.584	0.151		
	rankIQ	0.439	0.408	0.684	0.572	0.488	0.408		
	SER-FIQ(on Arcface)	0.935	0.653	1.310	1.015	1.169	0.870		
Image Quality	CNNIQA	0.862	0.873	1.370	1.397	1.319	1.135		
	NIQE	0.720	0.433	1.388	1.127	1.234	0.867		
	rankIQA	0.973	1.158	1.434	1.426	1.178	1.336		
	PIQE	0.981	0.859	1.704	1.719	1.446	1.241		
	MEON	0.858	1.110	1.665	1.793	1.362	1.622		
	dipIQ	0.973	0.962	1.435	1.224	1.383	1.399		
	BRISQUE	0.876	1.027	1.443	1.369	1.288	1.712		
	DBCNN	0.866	0.786	1.376	1.048	1.121	1.048		
	DeepIQA	1.105	1.045	1.685	1.901	1.421	1.520		
	UNIQUE	1.128	1.307	1.794	2.005	1.435	1.569		
Feature FIQA	inter eye dist	0.802	0.831	1.404	1.247	1.354	1.414		
	mean	0.387	0.399	0.968	1.037	0.678	0.798		
	sharpness	1.049	1.271	1.648	1.864	1.448	1.610		
	blur	0.697	0.748	1.246	1.164	1.146	0.998		
	contrast	0.708	0.531	1.367	1.150	0.860	0.708		
	sum exposure	0.465	0.780	1.189	1.301	0.879	1.301		
	symintersection	1.020	0.964	1.786	1.578	1.480	1.228		

Table 1. The table depicts the evaluation of DL-based FIQA methods, learned IQA methods, and the feature-based FIQA on the LFW DB for the FNMR at two reject ratios (20 % and 40 %) with two setups at FMR1000 and FMR100 based on three FR models (ArcFace, SphereFace, Facenet) respectively. Using the official test protocol from LFW, most methods behave similarly, still one of the FIQA methods dominates the top-1 rank consistently.

VGGFace2 at FMR 1000									
		ArcFace		Sphereface		FaceNet			
		20%	40%	20%	40%	20%	40%		
DL-based FIQA	PFE	7.505	5.955	20.394	10.836	13.694	8.127		
	MagFace	7.520	6.171	21.329	11.650	13.993	8.540		
	SDD	7.508	5.931	21.836	12.371	14.905	8.987		
	FaceQnet	8.494	6.875	25.864	19.211	17.441	12.721		
	rankIQ	9.096	8.215	25.185	19.004	18.351	14.505		
	SER-FIQ(on Arcface)	8.703	7.137	24.466	17.279	18.421	14.167		
Image Quality	CNNIQA	10.088	8.154	35.201	29.276	24.283	19.520		
	NIQE	12.732	13.106	41.373	41.494	29.506	29.830		
	rankIQA	9.456	7.914	32.459	28.355	22.066	18.796		
	PIQE	9.612	9.056	35.553	34.411	23.854	22.811		
	MEON	9.497	7.831	32.572	29.009	22.385	19.171		
	dipIQ	9.248	7.234	32.775	28.798	22.173	18.519		
	BRISQUE	8.468	7.292	30.706	27.002	20.593	17.683		
	DBCNN	8.565	7.246	41.815	47.275	21.012	18.144		
	DeepIQA	9.587	8.157	30.813	27.502	23.038	20.117		
	UNIQUE	11.385	11.138	40.141	41.220	27.655	27.810		
Feature FIQA	inter eye dist	8.670	7.274	28.378	25.373	19.364	16.702		
	mean	10.611	9.796	36.088	34.573	25.628	24.578		
	sharpness	9.373	8.326	30.967	27.952	21.145	18.704		
	blur	8.774	7.152	30.966	26.590	20.773	17.460		
	contrast	10.866	10.508	35.724	34.117	25.098	24.235		
	sum exposure	11.227	10.781	37.944	37.677	26.755	26.399		
	symintersection	11.309	11.036	32.646	28.836	23.624	21.906		

VGGFace2 at FMR 100									
		ArcFace		Spher	reface	Face	eNet		
		20%	40%	20%	40%	20%	40%		
DL-based FIQA	PFE	6.393	5.104	9.763	6.130	6.950	4.897		
	MagFace	6.438	5.280	10.473	6.564	7.195	5.170		
	SDD	6.377	5.085	10.356	6.441	7.365	5.110		
	FaceQnet	6.984	5.749	12.980	8.948	8.682	6.148		
	rankIQ	7.496	6.798	13.041	10.113	9.235	7.583		
	SER-FIQ(on Arcface)	7.274	6.113	13.120	9.581	9.461	7.404		
Image Quality	CNNIQA	8.157	6.712	19.511	15.466	12.755	9.742		
	NIQE	10.216	10.504	23.585	23.951	16.243	16.638		
	rankIQA	7.743	6.592	17.551	14.522	11.452	9.149		
	PIQE	7.747	7.245	18.965	18.206	12.095	11.509		
	MEON	7.702	6.396	17.713	14.974	11.348	9.159		
	dipIQ	7.578	5.940	17.597	14.405	11.260	8.702		
	BRISQUE	6.939	6.025	16.058	13.574	10.124	8.386		
	DBCNN	7.028	6.002	16.390	14.268	10.784	8.851		
	DeepIQA	7.805	6.633	18.067	15.579	11.789	9.918		
	UNIQUE	9.086	8.949	22.409	22.897	14.762	14.861		
Feature FIQA	inter eye dist	7.175	6.115	14.447	12.261	9.410	7.762		
	mean	8.435	7.710	20.242	19.110	13.760	13.298		
	sharpness	7.586	6.827	16.150	14.210	10.553	9.047		
	blur	7.218	5.910	16.356	13.531	10.524	8.413		
	contrast	8.714	8.389	20.150	19.445	13.586	13.179		
	sum exposure	8.922	8.536	21.298	21.032	14.407	14.135		
	symintersection	9.145	9.050	18.003	16.261	12.335	11.551		

Table 2. The table depicts the evaluation of DL-based FIQA methods, learned IQA methods, and the feature-based FIQA on the VGGFace2 for the FNMR at two reject ratios (20% and 40%) with two setups at FMR1000 and FMR100 based on three FR models (ArcFace, SphereFace, Facenet) respectively.

BioSecure at FMR 1000									
		Arcl	Face	Spher	eface	Face	eNet		
		20%	40%	20%	40%	20%	40%		
DL-based FIQA	PFE	0.000	0.000	0.000	0.000	0.024	0.031		
	MagFace	0.000	0.000	0.000	0.000	0.035	0.011		
	SDD	0.000	0.000	0.000	0.000	0.018	0.012		
	FaceQnet	0.000	0.000	0.030	0.000	0.000	0.000		
	rankIQ	0.000	0.000	0.019	0.030	0.000	0.000		
	SER-FIQ(on Arcface)	0.000	0.000	0.029	0.000	0.009	0.000		
Image Quality	CNNIQA	0.000	0.000	0.021	0.035	0.031	0.035		
	NIQE	0.000	0.000	0.033	0.019	0.000	0.000		
	rankIQA	0.000	0.000	0.056	0.020	0.011	0.000		
	PIQE	0.000	0.000	0.011	0.000	0.000	0.000		
	MEON	0.000	0.000	0.033	0.020	0.000	0.000		
	dipIQ	0.000	0.000	0.032	0.018	0.021	0.036		
	BRISQUE	0.000	0.000	0.020	0.016	0.040	0.000		
	DBCNN	0.000	0.000	0.065	0.099	0.037	0.024		
	DeepIQA	0.000	0.000	0.043	0.043	0.028	0.028		
	UNIQUE	0.000	0.000	0.046	0.025	0.038	0.064		
Feature FIQA	inter eye dist	0.000	0.000	0.033	0.019	0.000	0.000		
	mean	0.000	0.000	0.043	0.000	0.000	0.000		
	sharpness	0.000	0.000	0.032	0.051	0.000	0.000		
	blur	0.000	0.000	0.055	0.020	0.33	0.000		
	contrast	0.000	0.000	0.042	0.017	0.010	0.000		
	sum exposure	0.000	0.000	0.020	0.016	0.000	0.000		
	symintersection	0.000	0.000	0.053	0.070	0.042	0.070		

BioSecure at FMR 100								
		ArcFace		Sphereface		Face	eNet	
		20%	40%	20%	40%	20%	40%	
DL-based FIQA	PFE	0	0	0	0	0	0	
	MagFace	0	0	0	0	0	0	
	SDD	0	0	0	0	0	0	
	FaceQnet	0	0	0	0	0	0	
	rankIQ	0	0	0	0	0	0	
	SER-FIQ(on Arcface)	0	0	0	0	0	0	
Image Quality	CNNIQA	0	0	0	0	0	0	
	NIQE	0	0	0	0	0	0	
	rankIQA	0	0	0	0	0	0	
	PIQE	0	0	0	0	0	0	
	MEON	0	0	0	0	0	0	
	dipIQ	0	0	0	0	0	0	
	BRISQUE	0	0	0	0	0	0	
	DBCNN	0	0	0	0	0	0	
	DeepIQA	0	0	0	0	0	0	
	UNIQUE	0	0	0	0	0	0	
Feature FIQA	inter eye dist	0	0	0	0	0	0	
	mean	0	0	0	0	0	0	
	sharpness	0	0	0	0	0	0	
	blur	0	0	0	0	0	0	
	contrast	0	0	0	0	0	0	
	sum exposure	0	0	0	0	0	0	
	symintersection	0	0	0	0	0	0	

 Table 3. The table depicts the evaluation of DL-based FIQA methods, learned IQA methods, and the feature-based FIQA on the BioSecure DB for the FNMR at two reject ratios (20% and 40%) with two setups at FMR1000 and FMR100 based on three FR models (ArcFace, SphereFace, Facenet) respectively.

Figure 1. The curves show error vs. reject characteristics at FMR1000 (first three figures) and FMR100 (last three figures) on handcrafted features, learned IQA methods, and DL-based FIQA methods. The rows reveal the ERC results for different face embeddings on BioSecure database. Because the image quality of the Biosecure database is consistently well controlled, no useful trend can be extracted from the ERC plot.

Figure 2. The curves show error vs. reject characteristics at FMR100 on handcrafted features of face images. The rows show the ERC results for different face embeddings on BioSecure, LFW, and VGGFace2. Inter-eye distance performed well on VGGFace2 using original images, while sharpness and blur are well performed for aligned images. However, individual feature contributes inconsistently across different settings as the case for FMR1000.

Figure 3. Performance for the predicted face utility based on IQA (dashed lines) and DL-based FIQA (solid lines) methods is shown. The curves show ERCs at FMR100. The rows show the results for diverse face embeddings on BioSecure, LFW, and VGGFace2. DL-based FIQA methods outperform IQA methods on most of the setups. The correlation between learned IQA methods and the face image utility remains observable in this experiment with a decreasing trend in the error rate.

Figure 4. The confusion matrix shows the ratio of overlapped samples between the samples with the lowest 10% qualities (lowest on the left matrix and highest on the right matrix) as measured by two quality estimation methods (on the X and Y axes). The data are extracted from BioSecure database.

Figure 5. The confusion matrix shows the ratio of overlapped samples between the samples with the highest 10% qualities (lowest on the left matrix and highest on the right matrix) as measured by two quality estimation methods (on the X and Y axes). The data are extracted from BioSecure database.

Figure 6. The confusion matrix shows the ratio of overlapped samples between the samples with the lowest 10% qualities (lowest on the left matrix and highest on the right matrix) as measured by two quality estimation methods (on the X and Y axes). The data are extracted from LFW database.

Figure 7. The confusion matrix shows the ratio of overlapped samples between the samples with the highest 10% qualities (lowest on the left matrix and highest on the right matrix) as measured by two quality estimation methods (on the X and Y axes). The data are extracted from LFW database.