Supplemental material:
Single-shot dense active stereo with pixel-wise phase estimation
based on grid-structure using CNN and correspondence estimation using GCN

1. CG Images to training U-Nets for phase and
code detections and GCN

1.1. CG dataset for U-Nets training

Fig. 1 shows examples of the CG-synthesized training
images of U-Nets for phase and code detections. The U-
Nets are trained with 200x200 patches, mini-batch sizes of
16, 5400 sets of image patches. They are sampled from 360
sets of rendered images shown in Fig. 1. The optimizer was
adam, with [2-loss functions for sinusoidal signals and cross
entropy for code signals. They are trained for 300 epochs.

1.2. CG dataset for GCN training

Fig. 2 shows examples of source data for generating
training data for GCN for correspondence prediction. Using
CG, source pattern and corresponding IDs are projected into
images. From the images, grid graphs with corresponding
ID data as teacher signals are generated.

2. Phase-estimation results for various patterns

Fig. 3 shows phase detection results for various pat-
terns with explicit/implicit grid structures. For compari-
son, ground truth phase values calculated from phase-shift
method are also shown. The projected patterns were [2, 3],
respectively. The proposed method could evaluate grid
phases stably. Note that these pattern does not necessarily
have explicit grid lines.

3. Network detail and parameters for training
GCN for correspondence prediction

3.1. GCN-II network detail

Fig. 4 shows the architecture of the GCN for correspon-
dence prediction, which is depicted as a box with “GCNII
layer” in the Fig. 6 in the original paper. Since four different
directions of up, down, left, right and adjacency are taken
into account, five edge matrices are used. Thus, the number
of GCN layers is five. Then, the GCN is trained with mini-
batch sizes of 8, from 864 sets of graphs with ground-truth

IDs that are generated from CG. The graphs from the train-
ing data are augmented by extracting their subgraphs. The
optimizer was adam, with cross entropy loss between the
predicted and ground-truth corresponding node IDs. The
number of iterations of training was 100000 (in the number
of mini-batch optimization).

3.2. Intermediate images for 3D reconstruction
procedure

Fig. 5 shows intermediate images for 3D reconstruction
procedure of an input image.

3.3. Images for the auto-calibration experiment de-
scribed in Section 6.3 of the paper

Fig. 6 shows input images and feature points used for
the auto-calibration experiment for Table 2, described in
Section 6.3 of the original paper. It is confirmed that
much larger number of feature points can be used for auto-
calibration with the proposed method than Furukawa’s et
al. [1], resulting in better calibration.

4. Various object reconstruction results

4.1. Static objects

Fig. 7 shows examples of reconstruction results of our
method. As can be seen, curved surfaces with textures are
robustly estimated by our method.

4.2. Moving objects

Fig. 8 shows another example of moving object, where
throwing ball is reconstructed by our method. Since ordi-
nary camera can capture only blurry images as shown in
Fig. 8(a), we set shutter speed 1ms and shape is successfully
reconstructed. Kinect Azure also fails to capture correct
depth, i.e., shapes are distorted and split into three blocks.
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Figure 1. CG-Synthesized training images for U-Nets predicting pattern phases and codes: (a) Input image; (b) image where horizontal
sinusoidal pattern with % phase-shift is projected; (c) horizontal sinusoidal pattern with 1*52" phase-shift; (d) horizontal sinusoidal
pattern with 2*52"' phase-shift; (e) mask image; (f) image where vertical sinusoidal pattern with O phase-shift is projected; (g) horizontal
sinusoidal pattern with 7 phase-shift; and (h) codes at grid points of the dot-line pattern. Only the white region of mask images (e) are

used for training loss for sinusoidal patterns (b,c,d,f,g), and only the non-black regions are used for training loss for code images (h).

Figure 2. Source images for generating training graph data for GCN-based correspondence prediction: (a) synthesized shapes; (b) images
where dot-line patterns are projected; and (c) images where ground-truth correspondence ID data are projected.
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Figure 3. Phase detection results for various grid-like patterns. (a) Source images, (b)estimated phase values, (c) 3D reconstruction results,
and (d) profile values compared to ground truth value (phase shift method). The pattern used are from [2] (the 1st row), an original pattern
(the 2nd row), and [3] (the 3rd row), respectively.
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Figure 4. Network architecture of GCN for calculating node-wise code-feature embedding.
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Figure 5. Intermediate images for the proposed 3D reconstruction process: (a) Input image; (b) predicted mask image; (c) predicted hor-

(P

izontal sinusoidal signal (phase-shift %); (d) predicted horizontal sinusoidal signal (phase-shift 1*52”); (e) predicted vertical sinusoidal

signal (phase-shift 1*%); (f) predicted vertical sinusoidal signal (phase-shift 1*52” ); (g) horizontal phase signal calculated from 5 images
including (c) and (d); (h) vertical phase signal calculated from 2 images of (e) and (f); (i) predicted code image; (j) phase-grid superpixels
segmented from (g) and (h); (k) code information sampled at the centers of phase-graph superpixels; (1) phase-grid graph extracted as
adjacency graph of phase-grid superpixels (i.e., (j)); (m) GCN-based correspondence prediction results visualized by column IDs of the
pattern; (n) dense correspondence estimation obtained from (m) and (g); (o) another visualization of (n) with iso-value curves; and (p) a
shaded 3D reconstruction result.
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Figure 6. Images for the auto-calibration experiment (Sec. 5.2 of the paper): (a,b)Input images (2 of 9 images) for Furukawa et al. [1]
captured with different distances to the camera; (c,d) detected points used for auto-calibration for Furukawa et al. [1]; (e) an input images
(1 of 2 images) for proposed method; (f) GCN-predicted IDs for the grid points; (g) points used for auto-calibration (unused points are

removed because of uncertain vertical IDs).
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Figure 7. Reconstruction results of various static objects with textures.
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Figure 8. Measurement of fast moving object (a throwing ball). (a): Image captured by normal shutter speed. (b)(c): Measurement results
by Kinect v2. (d): Image captured by fast shutter speed. (e)(f): Measurement results by the proposed method.
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