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A. Content
In these supplementary materials we describe the hyper-

parameter search, more in-depth results for the optimization-
based multi-task learning (MTL) methods as well as the
ablation studies. We also show examples of the different task
classes, and show examples of success and failure cases for
the CT-GNN. Specifically, the following will be described:

• Example images of the different task classes (Sec-
tion B).

• Hyperparameter search (Section C).

• In-depth optimization-based MTL results (Section D).

• In-depth results for the λdefect ablation study (Sec-
tion E).

• In-depth results for the MTAN and CT-GNN ablation
study (Section F).

• Examples of how the CT-GNN succeeds and fails (Sec-
tion G).

B. Sewer-ML Task Class Examples
For the sake of clarity we show examples of each class

in the water level, pipe shape and pipe material tasks, see
Figure 10-12. For examples of the pipe defect classes we
refer to the supplementary materials of the Sewer-ML paper
[1].

C. Hyperparameter Search
In the hyperparameter search for the CT-GNN decoder

we investigated the effect when varying the design of the
bottleneck layer and the CT-GNN. The investigated parame-
ters and their search space is presented in Table 2. It should
be noted that the amount of attention heads, H , and the
re-weighting parameter, p, were only utilized for the GAT

Table 1: Initial Hyperparameter Values. The investigated
hyperparameters are set to the following starting values, and
after each step of the sequential search the corresponding
hyperparameter is updated. It should be noted that τ used
in the GAT GNN was set to 0.05. This was done to reduce
the amount of noisy graph edges in the Sewer-ML dataset,
caused by the large class imbalance in some tasks.

Hyperparameter GCN GAT

L 2 2
dEMB 256 256
dBTL 32 32
H - 8
τ 0.05 0.05
p 0.2 -

[6] and GCN [3] GNNs, respectively. Due to the amount
of hyperparameters and the size of the value ranges, we de-
cided to employ a sequential hyperparameter search design.
The search was initialized with the hyperparameters stated
in Table 1. All tests were performed with λdefect = 0.50 to
ensure a fair weighting of the tasks, while prioritizing the
defect task.

At each step of the search the best performing hyperpa-
rameter was kept and used for all future steps of the search.
The order of the sequential search was realized as follows:

1. Grid search across the number of GNN layers, L, and
the number of GNN channels, dEMB.

2. Search over the number of channels in the bottleneck
layer, dBTL.

3. Search over the number of attention heads, H . Only
performed for GAT.

4. Search over the adjacency matrix threshold, τ .



Table 2: Investigated Hyperparameters. The hyperparameters of the CT-GNN and the Bottleneck layer were investigated.
For each hyperparameter we have denoted the values investigated.

Hyperparameter Range

L [1, 2, 3]
dEMB [128, 256, 512]
dBTL [16, 32, 64, 128]
H [1, 2, 4, 8, 16]
τ [0.00, 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]
p [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

1 2 3
L

128

256

512

d E
M

B

8.37 7.47 10.42

7.27 9.55 8.07

9.12 6.90 11.00

Figure 1: Grid search over L and dEMB for CT-GCN.

5. Search over the adjacency matrix neighbor node
reweighting parameter, p. Only performed for GCN.

The results of the sequential hyperparameter search on
the Sewer-ML dataset are shown in Figures 1-6. From these
results we can conclude that the performance when using
the GAT leads to more stable performances as the ∆MTL
in general does not vary as wildly as when using the GCN.
However, when using the GCN we achieve in general higher
∆MTL. We can also observe that the adjacency matrix thresh-
old τ has a large effect on the performance. Specifically,
it is observable that using a low τ of 0.05 leads to good
performance, which is only matched when τ is set to 0.65
and above for the GAT and 0.35 and above for the GCN.
Lastly, we observe that an increased neighbor node reweight-
ing parameter p leads to degraded performance, indicating
that the center-node information is crucial. The conditional
probability matrix, the binary matrices with τ set to 0.05
and 0.65, as well as the reweighted adjacency matrix with
τ = 0.05 and p = 0.2 are shown in Figure 7a-7d.

D. Optimization-Based MTL - In-Depth Re-
sults

We present the full results for the optimization-based
method Dynamic Weight Averaging (DWA) [5] and Uncer-
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Figure 2: Grid search over L and dEMB for CT-GAT.
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Figure 3: Search over dBTL.

tainty estimation (Uncrt.) [2, 4], see Table 3. The DWA task
weighting method is initialized with λdefect = 0.90, while
Uncrt. is initialized with unit variances for each task. From
the results we observe that the DWA method performs worse
than the STL networks on nearly every task. The Uncrt.
method improves the shape and material MF1 compared to



Table 3: Effect of optimization-based methods. In-depth results for two optimization-based methods, DWA [5] and the
uncertainty (Uncrt.) based method [2, 4]. TW indicates the task weighting method used and #P indicates the number of
parameters in millions. The best performance in each column is denoted in bold.

Model Overall Defect Water Shape Material

Encoder TW #P ∆MTL F2CIW F1Normal MF1 mF1 MF1 mF1 MF1 mF1

V
al

. STL - 94.0 +0.00 58.42 92.42 69.11 79.71 46.55 98.06 65.99 96.71
R50-MTL DWA 23.5 -15.70 34.22 86.57 53.43 70.83 37.68 98.18 53.50 90.79
R50-MTL Uncrt. 23.5 -4.07 24.80 86.80 62.00 75.31 67.30 99.19 67.46 95.66

Te
st

STL - 94.0 +0.00 57.48 92.16 69.87 80.09 56.15 97.59 69.02 96.67
R50-MTL DWA 23.5 -11.57 34.84 86.20 54.30 71.03 59.27 97.81 60.39 90.49
R50-MTL Uncrt. 23.5 -3.78 26.30 86.48 63.01 76.15 79.69 98.99 70.84 95.59
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Figure 4: Search over H .
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Figure 5: Search over τ .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

6

7

8

9

10

11

M
TL

 (%
)

GCN

Figure 6: Search over p.

the STL networks, but suffers from poor defect classification
rate.

E. Effect of λdefect - In-Depth Results
We show the in-depth results for each tested setting of

λdefect on the validation split for the R50-MTL baseline as
well as CT-GNNs, see Table 4. We observe that a larger
λdefect leads to a higher ∆MTL due to a higher F2CIW. How-
ever, it also leads to a lower material MF1 score, as we
observe that the material MF1 score peaks at 90.5% for the
CT-GNNs when λdefect = 0.50, and decreases to 82-86%
when λdefect = 0.90.

F. Combining the MTAN Encoder and CT-
GNN Decoder - In-Depth Results

We present the in-depth results of the ablation studies
investigating the combination of MTAN encoder and the
CT-GNN Decoder, see Table 5. The methods were only
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(a) The conditional probability matrix based on the training labels.
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(b) The re-weighted adjacency matrix obtained when τ = 0.65.
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(c) The re-weighted adjacency matrix obtained when τ = 0.05.
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(d) The re-weighted adjacency matrix when τ = 0.05 and p = 0.2.

Figure 7: Adjacency matrix construction. We show the conditional probability matrix across task classes, as well as the
constructed binary and reweighted adjacency matrices.

evaluated on the validation split. From the results we see that
the ∆MTL is increased by introducing the CT-GNN, and that
the combination with the CT-GCN outperforms using a hard-
shared encoder. We observe that the noticeable difference
is in the defect classification task where the performance is
increased by 0.6-0.7 percentage points on the F2CIW metric.

G. CT-GNN Success and Failure Cases

We show several cases where the CT-GNN decoder cor-
rectly classifies all tasks, shown in Figure 8, as well as cases
where some or all tasks are misclassified, shown in Figure 9.

We observe that the the CT-GNN performs well when
several defects occur at the same time at different distances



Table 4: Effect of λdefect. We compare the performance of the R50-MTL baseline and CT-GNN heads when training with
different λdefect values. Evaluated on the validation split. The best performance in each column is denoted in bold per method.

Model Overall Defect Water Shape Material

Model λdefect ∆MTL F2CIW F1Normal MF1 mF1 MF1 mF1 MF1 mF1

R
50

-M
T

L

0.25 +5.45 32.86 88.40 69.42 79.85 74.72 99.21 84.64 97.83
0.33 +6.22 39.85 89.08 69.18 79.89 70.29 99.31 86.61 97.96
0.50 +6.91 40.78 89.31 69.35 79.90 71.58 99.25 87.21 97.75
0.67 +11.11 52.53 90.69 70.19 80.22 75.74 99.38 87.83 98.11
0.75 +9.99 56.31 91.41 70.15 80.42 69.91 99.40 85.13 98.30
0.90 +10.36 59.73 91.87 70.51 80.47 71.64 99.34 80.28 98.09
0.95 +10.40 60.34 91.85 69.35 80.02 71.85 99.19 81.26 97.82

C
T-

G
C

N

0.25 +5.79 39.44 88.77 69.76 79.63 73.67 99.27 80.06 97.79
0.33 +7.45 42.56 89.12 69.36 79.82 72.20 99.20 87.40 97.81
0.50 +11.00 50.35 90.01 70.04 79.98 75.80 99.44 90.54 97.96
0.67 +10.20 54.67 90.64 69.78 79.92 72.94 99.35 85.31 98.06
0.75 +10.75 57.71 91.11 70.48 80.21 70.95 99.37 86.27 98.21
0.90 +12.39 61.35 91.84 70.57 80.47 76.17 99.33 82.63 98.18
0.95 +9.05 62.10 92.01 69.95 80.04 67.36 99.11 77.83 97.89

C
T-

G
A

T

0.25 +7.69 37.02 88.69 70.06 80.18 75.47 99.45 89.40 97.89
0.33 +5.70 42.17 89.09 69.54 79.96 71.72 99.37 78.80 97.95
0.50 +10.33 49.96 89.98 69.69 79.90 73.90 99.41 90.52 98.06
0.67 +10.20 55.26 90.69 69.80 80.38 72.41 99.40 84.90 98.12
0.75 +12.10 58.37 91.45 70.46 80.43 76.82 99.46 83.75 98.35
0.90 +12.81 61.70 91.94 70.57 80.43 74.53 99.40 86.63 98.24
0.95 +10.65 60.95 92.03 69.01 79.59 70.75 99.18 83.99 97.84

Table 5: Effect of encoder. We compare the effect of training CT-GNN using GCN and GAT with the MTAN encoder, and
with fixed task weights. #P indicates the number of parameters in millions. Evaluated on the validation split. The best
performance in each column is denoted in bold.

Model Overall Defect Water Shape Material

Encoder CT-GNN #P ∆MTL F2CIW F1Normal MF1 mF1 MF1 mF1 MF1 mF1

MTAN ✗ 48.2 +10.40 61.21 92.10 70.06 80.59 68.34 99.40 83.48 98.25
MTAN GCN 49.9 +12.72 61.86 91.99 71.39 80.53 75.42 99.46 83.77 98.25
MTAN GAT 48.6 +11.48 61.92 92.03 70.95 80.50 71.17 99.39 83.65 98.29

to the camera (see top left example), as well as subtle defects
such as the distortion in the bottom middle example and
crack in the bottom left example. Similarly, this can be
observed in the top right example where the high water level
is detected even though it is partially occluded and unlit.
Lastly it can correctly handle rare classes such as the iron
material in the bottom right example.

In Figure 9 we observe that the the CT-GNN misclassify
irregularities in the pipe geometry as displaced pipes (FS) or
construction changes (OK), as seen in the top right and top
middle examples. In both cases the predictions is understand-
able as the internal reparation is shifted (top left) and the

camera is placed right before a well (top middle). In the top
right case the deformation is observed as a surface damage,
which is understandable due to the folds of the deformation.
For the cases where all classifications are incorrect, we see
that the CT-GNN decoder misclassifies several tasks due to
limited context introduced by the camera perspective.



Task Ground Truth CT-GNN

Defect RB,OB,FS,AF RB,OB,FS,AF
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Concrete Concrete

Task Ground Truth CT-GNN

Defect FS,AF FS,AF
Water [5%, 15%) [5%, 15%)
Shape Circular Circular

Material Concrete Concrete

Task Ground Truth CT-GNN

Defect FS,PH FS,PH
Water [30%, 100%] [30%, 100%]
Shape Circular Circular

Material Concrete Concrete

Task Ground Truth CT-GNN

Defect RB,PB RB,PB
Water [5%, 15%) [5%, 15%)
Shape Circular Circular

Material Plastic Plastic

Task Ground Truth CT-GNN

Defect DE DE
Water [5%, 15%) [5%, 15%)
Shape Circular Circular

Material Lining Lining

Task Ground Truth CT-GNN

Defect OB,OK OB,OK
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Iron Iron

Figure 8: Examples of correct classifications with the CT-GNN. Example cases where the CT-GNN correctly classifies all
four tasks.



Task Ground Truth CT-GNN

Defect OK OK,FS
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Plastic Plastic

Task Ground Truth CT-GNN

Defect BE BE,OK
Water [0%, 5%) [5%, 15%)
Shape Circular Circular

Material Plastic Plastic

Task Ground Truth CT-GNN

Defect DE,OK OB,OK
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Lining Lining

Task Ground Truth CT-GNN

Defect PF,OS OB,FS,PH
Water [5%, 15%) [30%, 100%]
Shape Conical Circular

Material Lining Concrete

Task Ground Truth CT-GNN

Defect OS None
Water [15%, 30%) [30%, 100%]
Shape Circular Conical

Material Plastic Lining

Task Ground Truth CT-GNN

Defect OK None
Water [5%, 15%) [0%, 5%)
Shape Circular Conical

Material Plastic Lining

Figure 9: Examples of incorrect classifications with the CT-GNN. Example cases where the CT-GNN incorrectly classifies
some or all four tasks. Incorrect classifications are denoted in red.



Figure 10: Water level class examples. Example images of the four considered water level classes.
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Figure 11: Pipe shape class examples. Example images of the six considered pipe shape classes.
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Figure 11: Continued from previous page
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Figure 12: Pipe material class examples. Example images of the eight considered pipe material classes.
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Figure 12: Continued from previous page
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