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A. Implementation details on computation cost
In the main paper, computational resources (BOPs and estimated energy consumption) are measured with respect to quan-

tization bit-width, considering the overflow of low-bit arithmetic operations. Overflow occurs when an arithmetic operation
attempts to create a numeric value that is outside the range that can be possibly represented. Taking integer overflow into
account is especially essential in low-bit networks, since the output ranges of low-bit multiplication and addition are strictly
limited. Various techniques are used to avoid the integer overflow, such as using the overflow checker or value sanity test-
ing. For ultra-low precision operations where the integer overflow is highly likely to occur, we design an appropriate large
bit-width for each operation, under the assumption of an integer overflow. For instance, when the sum is accumulated over
vector of size C with each n-bit element, the output buffer is n+log2(C-1)-bit. Also, the output buffer for multiplication of
two n-bit elements is (2n-1)-bit.

B. Derivation of convolution operations for DAQ
Section 3.3 in the main paper claims that quantization can step forward to hardware efficiency simply by postponing

the de-transformation process as late as possible (See Equation (B), (D), and (G)). As more operations are done before
de-transformation, in other words, in the state of real integer, the more efficient the quantization becomes.

Section 3.2 of the main paper presents a convolution operation with a n-bit channel-wise quantized feature map and a n-bit
layer-wise quantized weight tensor. Given a feature map x ∈ RC×H×W , c-th channel, j, k-th element of the feature map is
denoted as xc[j, k] with the indexing operator [·, ·]. Given a weight w ∈ RC×Cout×K×K , c-th input channel and i, u, v-th
element of a part of weight tensor w ∈ RC×Cout×K×K is denoted as wc[i, u, v] with indexing operator [·, ·, ·]. Then, the
output response y ∈ RCout×H×W is the output of convolution between the given feature map and the weight in a sliding
window manner. The i, j, k-th element of the output response is formulated as follows:

y[i, j, k] =

C∑
c=1

K∑
u=1

K∑
v=1

xc[u+j, v+k] · wc[i, u, v]. (A)

For simplicity, we drop the index subscript in the following equations to denote xc[u+j, v+k] as xc and wc[i, u, v] as wc.
From our proposed quantization method, convolution with floating-point values can be approximated with low-precision
values, as follows:

y[i, j, k] ≈
C∑
c=1

K∑
u=1

K∑
v=1

xqc · wqc (B)

=

C∑
c=1

K∑
u=1

K∑
v=1

(σcs(n) · x̂qc + µc) · (σws(n) · ŵqc) (C)

*equal contribution



= σws(n)
2
C∑
c=1

σc ·
K∑
u=1

K∑
v=1

x̂qc · ŵqc + σws(n)

C∑
c=1

µc

K∑
u=1

K∑
v=1

ŵqc . (D)

Likewise overview Figure 3 in the main paper, the channel-wise de-transformation (see Equation (D)) derived from the
procedure with element-wise de-transformation (see Equation (B)) can reduce costly operations with floating-point values.
Although the computation costly operation of element-wise de-transformation is largely reduced in Equation (D), it still
bears computational overhead, by operating the channel-wise summation in floating-point values (due to floating-point de-
transformation parameters µc and σc). To alleviate this issue, main paper presents a scheme of quantizing quantization
transformation parameters of µ ∈ RC and σ ∈ RC , to approximate µc and σc by using the distribution statistics of µ and σ.
From Equation 4, 5, 6 of the main paper, Equation (D) can be approximated as follows:

≈ σws(n)2
C∑
c=1

σqc ·
K∑
u=1

K∑
v=1

x̂qc · ŵqc + σws(n)

C∑
c=1

µqc

K∑
u=1

K∑
v=1

ŵqc (E)

= σws(n)
2
C∑
c=1

(σσs(m) · σ̂qc + µσ) ·
K∑
u=1

K∑
v=1

x̂qc · ŵqc + σws(n)

C∑
c=1

(σµs(m) · µ̂qc + µµ)

K∑
u=1

K∑
v=1

ŵqc (F)

= σws(n)
2σσs(m)

C∑
c=1

σ̂qc

K∑
u=1

K∑
v=1

x̂qc · ŵqc + σws(n)
2µσ

C∑
c=1

K∑
u=1

K∑
v=1

x̂qc · ŵqc

+ σws(n)σµs(m)

C∑
c=1

µ̂qc

K∑
u=1

K∑
v=1

ŵqc + σws(n)µµ

C∑
c=1

K∑
u=1

K∑
v=1

ŵqc .

(G)

The floating-point channel-wise summation (see Equation (D)) is replaced with lower-precision channel-wise summation
(see Equation (G)). As shown in Table A, simply changing the operation order from Equation (A) to Equation (D) reduces
the BOPs largely from 174T to 10T. Furthermore, quantizing quantization transformation parameters (QQ) in Equation (D)
results in Equation (G), which further reduces the BOPs to 3T with 4-bit for QQ.

Table A: Computational cost comparison of a 2-bit (w2a2) channel-wise quantized convolution. C=Cout=256, K=3, (H,W )=(480, 270)

De-transformation
Eqn.

Number of (n-bit, m-bit) operations
BOPsType QQ (2, 2) (3, 3) (6, 4) (6, 6) (9, 9) (14, 32) (17, 32) (32, 32)

Element-wise 7 Eqn. (B) - - - - - - - 169937M 174015G

Channel-wise 7 Eqn. (D) 76441M 67948M - 8493M - 8493M - 8493M 10108G

Channel-wise 3 Eqn. (G) 152882M 135895M 8493M 8493M 8460M 33M 33M 66M 3046G



C. Additional experiments
C.1. Comparison with SotA methods

Existing state-of-the-art quantized SR networks [23, 41] involve a specialized architecture or an ad-hoc training scheme for
low precision SR networks, mostly concentrated on binary precision. BTM [23] exploits a new training scheme like knowl-
edge distillation and specialized gradient update rule instead of the traditional straight-through estimator [46]. BAM [41]
designs a new binarized SR network, namely BSRN, utilizing a bit accumulation module.

Our proposed quantization method is orthogonal to these techniques. EDSR-BTM and BSRN-BAM are re-implemented
according to the respective paper, and we replace the typical quantization (binarization) function with our distribution-aware
channel-wise quantization (DAQ) function. The re-implemented architectures and the DAQ-applied architectures are respec-
tively trained with batch size 4 and other settings same as the baseline in each paper. Despite the channel-wise overhead, our
proposed method DAQ gives clear auxiliary gain in performance, for about 0.3 dB in Set5, as shown in Table B.

Table B: Comparisons on existing low-precision SR networks, EDSR-BTM and BSRN-BAM of scale 4.

Method Precision BOPs Energy Parameters PSNR (dB)
w a Set5 Set14 B100 Urban100

EDSR-BTM [23] 1 1 23.1 T 52.8 mJ 43.1M 31.30 28.05 27.22 25.08
EDSR-BTM [23] - DAQ 1 1 75.1 T 138.9 mJ 43.1M 31.60 28.19 27.34 25.30

BSRN-BAM [41] 1 1 2.9 T 8.5 mJ 1.2M 31.17 27.94 27.15 25.01
BSRN-BAM [41] - DAQ 1 1 7.2 T 23.7 mJ 1.2M 31.44 28.03 27.21 25.05

C.2. SR Networks with batch normalization layers

In the main paper, we made a comparison with quantization methods without retraining. Among the compared methods,
DFQ [37] utilizes batch normalization (BN) parameters to further improve the quantization accuracy. However, the com-
parison backbone of Table 3, EDSR [31] removed the BN layers for improved performance, followed by several other SR
networks. For further fair comparison with DFQ, we compare the quantization methods without retraining, on EDSR with
BN. Table C shows that our method outperforms DFQ regardless of BN layers.

Table C: Comparison of quantization methods without retraining on pre-trained EDSR with BN of scale 4.

Method Precision BOPs Energy PSNR
w a (HD image) (HD image) (Urban100)

EDSR w/ BN 32 32 10025.8 T 22516.0 mJ 26.04 dB

EDSR w/ BN - LinQ 4 4 357.8 T 378.4 mJ 22.79 dB
EDSR w/ BN - DFQ 4 4 364.3 T 390.1 mJ 23.07 dB
EDSR w/ BN - DAQ 2 2 213.4 T 333.5 mJ 24.53 dB


