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In this document, we first provide the details of each component of the proposed network. In Table 1, we show the details
of the pose transformation module . In Table 2, we show how we extract multi-scale features from image prior. Similarly,
our discriminator and perceptual loss are based on the same structure. One thing worth noting is that we modify the last two
layers of vgg16 to output a 2-dimensional fully connected layer and a sigmod layer as our discriminator. In Table 3, we show
how we estimate the pose from the image prior using a prediction head. In Table 5, we show that how to transform the feature
from coarse to fine-grained level. Finally, using the video decoder as shown in Table 4, we generate the output action video.
In Figure 1, we compare our methods with others. Second, we show more qualitative results of generated frames in Figure
3 - 4. In addition, we also visualize the generated pose of our recurrent pose transformation module. As shown in Figure 2,
our module not only learns the motion from original pose sequence, but also transfers the motion into the target view of the
input pose. Moreover, we also include a demo video for novel view action prediction.

Name Layer Input Neurons Output Dims
- - - (C ×M)

pose full1 Linear ps1 100 2 × 25
pose full2 Linear ps2 100 2 × 25
pose full3 Linear pose full1+pose full2 100 2 × 25
vp full1 Linear θ1 25 1 × 25
vp full2 Linear θ2 25 1 × 25
vp full3 Linear vp full1+ vp full2 50 2 × 25
T full1 Linear vp full3+ pose full3 128 2 × 64
T full2 Linear T full1 256 2 × 128
T full3 Linear T full2 512 2 × 256
T full4 Linear T full3 1024 2 × 512
T full5 Linear T full4 512 2 × 256
T full6 Linear T full5 256 2 × 128
T full7 Linear T full6 128 2 × 64
T full8 Linear T full7 50 2 × 25
- ADD pa -

Table 1: Network details of the PT , which is used to transform the pose into target view. There are three different modules in
this network. The first one is the pose transformation module that takes the subsequent source poses as input and determines
the change in pose. Second, the change in viewpoint estimator which takes the source and target viewpoints and learns
a viewpoint deviation in latent space. The last module takes the estimated change in pose and transforms it to the target
viewpoint with the help of latent encodings for change in viewpoint. Finally, we will take the transformed pose motion to
conduct an element-wise addition to our estimated pose and generate the target pose for next time-step.

Limitations We would like to discuss the limitations of
our approach. As the results 1 show, our PAS-GAN shows
very high-quality generation results both from frame-level
and video-level. In fact, the blur produced by the previ-
ous method are greatly eliminated. However, our method

also produces results with some artifacts that can be seen
in the videos and frames. We analyze that this artifact is
caused by the fact that our decoder is a video-level 3D de-
coder (although we use the same decoder as RTNet [4], the
artifacts caused by it are obscured by the blur). This is-
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Name Layer Input Kernel Dims Strides Output Dims
( H ×W) ( H ×W) ( H ×W × C)

Conv1a 2D Conv P j 3 × 3 1 × 1 112 × 112 × 64
ReLU1a ReLU Conv1a - - 112 × 112 × 64
Conv1b 2D Conv ReLU1a 3 × 3 1 × 1 112 × 112 × 64
ReLU1b ReLU Conv1b - - 112 × 112 × 64
MaxPool1 2D Max Pool ReLU1b 2 × 2 2 × 2 56 × 56 × 64
Conv2a 2D Conv MaxPool1 3 × 3 1 × 1 56 × 56 × 128
ReLU2a ReLU Conv2a - - 56 × 56 × 128
Conv2b 2D Conv ReLU2a 3 × 3 1 × 1 56 × 56 × 128
ReLU2b ReLU Conv2b - - 56 × 56 × 128
MaxPool2 2D Max Pool ReLU2b 2 × 2 2 × 2 28 × 28 × 128
Conv3a 2D Conv MaxPool2 3 × 3 1 × 1 28 × 28 × 256
ReLU3a ReLU Conv3a - - 28 × 28 × 256
Conv3b 2D Conv ReLU3b 3 × 3 1 × 1 28 × 28 × 256
ReLU3b ReLU Conv3b - - 28 × 28 × 256
Conv3c 2D Conv ReLU3b 3 × 3 1 × 1 28 × 28 × 256
ReLU3c ReLU Conv3c - - 28 × 28 × 256
MaxPool3 2D Max Pool ReLU3c 2 × 2 2 × 2 14 × 14 × 256
Conv4a 2D Conv ReLU2b 3 × 3 1 × 1 14 × 14 × 128
ReLU4a ReLU Conv4a - - 14 × 14 × 128
Conv4b 2D Conv ReLU3c 3 × 3 1 × 1 28 × 28 × 128
ReLU4b ReLU Conv4b - - 28 × 28 × 128
Conv4c 2D Conv MaxPool3 3 × 3 1 × 1 56 × 56 × 128
ReLU4c ReLU Conv4c - - 56 × 56 × 128
Conv4d 2D Conv P j 3 × 3 1 × 1 112 × 112 × 32
ReLU4d ReLU Conv4d - - 112 × 112 × 32

Table 2: Network details of Ea, which was based upon [6]. The above table contains all layers of the encoder and four
additional layers to transform the featuremap to maintain the number of channels. The row of Input indicates where the input
of this layer comes from. Since the proposed method involves Multi-Scale Learning framework, there are four outputs from
this network: ReLU4a, ReLU4b, ReLU4c and ReLU4d.

Name Layer Input Kernel Dims Strides Output Dims
( H ×W) ( H ×W) (H ×W × C)

Conv1 2D Conv xa1 3 × 3 4 × 4 14 × 14 × 25
Conv2 2D Conv xa2 3 × 3 2 × 2 14 × 14 × 25
Conv2 2D Conv xa3 3 × 3 1 × 1 14 × 14 × 25
Final1 2D Conv Conv1, Conv2, Conv3 3 × 3 1 × 1 14 × 14 × 50
Final2 2D Conv Final1 3 × 3 1 × 1 14 × 14 × 25
Final3 SoftmaxMean Final2 - - 25 × 2

Table 3: Network details ofPE . It contains three convolutional layers to transform the input featuremaps to similar spatial size
and three additional layers to predict the pose. Notice that, the final3 layer calculates the softmax of the last two dimensions
of the input to obtain the probability vector. The output of this network would be number of joints with 2D coordinates.

sue is due to the fact that the interaction between frames
resulted from 3D convolution. But compared to frame-by-
frame generation network [5, 8], we are more efficient and
resource-saving. We believe that designing a more innova-
tive decoder is the key to solve this problem.
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ReLU4a ReLU Conv4a - - 16 × 112 × 112 × 8
Conv4b 3D Conv ReLU4a 1 × 1 × 1 1 × 1 × 1 16 × 112 × 112 × 3
Sig Sigmoid Conv4b - - 16 × 112 × 112 × 3

Table 4: Network details for the Video Decoder, DV , which generates the final output video vt based upon the three sets of
transformed appearance features and the Multi-scale attentionMA. Note that hierarchical generation is used, so the larger
appearance features are concatenated as input where appropriate. The final output has the same dimensions as the input video
V i.
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Name Layer Input Kernel Dims Strides Output Dims
( H ×W) ( H ×W) ( H ×W × C)

STN-Conv1 1D Conv pt1 3 1 25 × 2
STN-Conv2 1D Conv pt2 3 1 25 × 2
STN-Conv3 1D Conv STN-Conv1& STN-Conv1 3 1 25 × 2
STN-Linear1 Linear STN-Maxpool2 1 - 32
STN-Linear2 Linear STN-Linear1 1 - 6
Pose-crop - Ea-Conv3(1) - - scale × scale
Affine Trans Grid sampler STN-Linear2 +Pose-crop - - 14 × 14 × 128
GTN-Conv1 2D Conv Affine Trans Grid sampler

+ pt-Gaussian 7 × 7 1 × 1 14 × 14 × 256
GTN-Split Split GTN-Conv1 - - 14 × 14 × 128

14 × 14 × 128
GTN-Sig1 Sigmoid GTN-Split(1) - - 14 × 14 × 128
GTN-Sig2 Sigmoid GTN-Split(2) - - 14 × 14 × 128
GTN-Conv2 2D Conv Ea-Conv3(1)

+ pt-Gaussian 7 × 7 1 × 1 14 × 14 × 128
GTN-Tanh Tanh GTN-Conv2 - - 14 × 14 × 128
GTN-Final Concat (1 - GTN-Sig2) * pt-Gaussian

+ GTN-Sig2 * GTN-Tanh - - 14 × 14 × 128

Table 5: Network details of the LGT N . It is based on the Spatial transformation network [2], whose output would be the
predicted affine matrix. We adopt the key-region separator as discussed in main paper to crop the appearance featuremap.
Then, we use grid sampler to transform the feature. Then we use a GRU[1] global transformation on the output of local-
transformed feature. At last, we add this transformed foreground feature back to the background generated by the Pcrop.

Figure 1: Comparison of the generated frames between our proposed and existing methods. Row 1: source, row 2: target,
row 3: VDNet [3], row 4: VRNet [7], row 5: BasicNet, row 6: RTNet [4], row 7: proposed method. We can observe that that
RTNet [4] generates good quality frames, but it lacks action dynamics.



Figure 2: Generated pose results. Each corner represents one sample. In every corner, the first row is the target and the
second row is the generated results. We sample 4 frames (1, 3, 5 and 7) from original eight generated frames.



Figure 3: More qualitative results. Every three rows represent a video sample. In each sample, first row: the source video;
second row: the target video; third row: the generated video.



Figure 4: More qualitative results. Every three rows represent a video sample. We sample 8 frames. Each column represents
one frame. In each sample, first row: source video. The second row: target video. The third row: generated video.


