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Figure 1: Model architecture. The diagram is copied from the main text for reference. Our network consists an encoder that extracts
individual frame’s features, a recurrent decoder that aggregates temporal information, and a Deep Guided Filter (DGF) module for high-
resolution upsampling. When processing high-resolution frames, the input is first downsampled to pass through the encoder-decoder
network.

A. Overview
We provide additional details in this supplementary. In

Section B, we describe the details of our network architec-
ture. In Section C, we explain the details on training. In
Section D, we show examples of our composited matting
data samples. In Section E, we show additional results from
our method. We also attach video results in the supplemen-
tary. Please see our videos for better visualization.

B. Network

Backbone E 1
2
E 1

4
E 1

8
E 1

16
AS D 1

16
D 1

8
D 1

4
D 1

2
D 1

1

Ours 16 24 40 960 128 128 80 40 32 16
Ours Large 64 256 512 2048 256 256 128 64 32 16

Table 1: Feature channels at different scale. Ek and Dk denote
encoder and decoder channels at k feature scale respectively. AS
denotes LR-ASPP channels.

Table 1 describes our network and its variants with fea-
ture channels. Our default network uses MobileNetV3-
Large [5] backbone while the large variant uses ResNet50

*Work performed during an internship at ByteDance.

[4] backbone.

Encoder: The encoder backbone operates on individ-
ual frames and extracts feature maps of Ek channels at
k ∈ [ 12 ,

1
4 ,

1
8 ,

1
16 ] scales. Unlike regular MobileNetV3 and

ResNet backbones that continue to operate at 1
32 scale, we

modify the last block to use convolutions with a dilation
rate of 2 and a stride of 1 following the design of [1, 2, 5].
The last feature map E 1

16
is given to the LR-ASPP module,

which compresses it to AS channels.

Decoder: All ConvGRU layers operate on half of the
channels by split and concatenation, so the recurrent hid-
den state has Dk

2 channels at scale k. For the upsampling
blocks, the convolution, Batch Normalization, and ReLU
stack compresses the concatenated features to Dk channels
before splitting to ConvGRU. For the output block, the first
two convolutions have 16 filters and the final hidden fea-
tures has 16 channels. The final projection convolution out-
puts 5 channels, including 3-channel foreground, 1-channel
alpha, and 1-channel segmentation predictions. All convo-
lutions uses 3 × 3 kernels except the last projection uses a
1× 1 kernel. The average poolings use 2× 2 kernels with a
stride of 2.
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Deep Guided Filter: DGF contains a few 1 × 1 convo-
lutions internally. We modify it to take the predicted fore-
ground, alpha, and the final hidden features as inputs. All
internal convolutions use 16 filters. Please refer to [9] for
more specifications.

Our entire network is built and trained in PyTorch [8].
We clamp the alpha and foreground prediction outputs to
[0, 1] range without activation functions following [3, 6].
The clamp is done during both training and inference. The
segmentation prediction output is sigmoid logits.

C. Training

Algorithm 1: Training Procedures

for stage ∈ [1, 2, 3, 4] do
for epoch do

for iteration do
LowResMattingPass(B, T, h, w)
if stage ∈ [3, 4] then

HighResMattingPass(B, T̂ , ĥ, ŵ)
if iteration % 2 = 0 then

VideoSegmentationPass(B, T, h, w)
else

ImageSegmentationPass(B′, 1, h, w)

Algorithm 1 shows the training loop of our proposed
training strategy. The sequence length parameters T , T̂
are set according to the stages, which is specified in our
main text; the batch size parameters are set to B = 4,
and B′ = B × T ; The input resolutions are randomly
sampled as h,w ∼ Uniform(256, 512) and ĥ, ŵ ∼
Uniform(1024, 2048).

Our network is trained using 4 Nvidia V100 32G GPUs.
We use mixed precision training [7] to reduce the GPU
memory consumption. The training takes approximately
18, 2, 8, and 14 hours in each stage respectively.

D. Data Samples
Figure 2 shows examples of composited training samples

from the matting datasets. The clips contain natural move-
ments when compositing with videos as well as artificial
movements generated by the motion augmentation.

Figure 3 shows examples of the composited testing sam-
ples. The testing samples only apply motion augmentation
on image foreground and backgrounds. The motion aug-
mentation only consists of affine transforms. The strength
of the augmentation is also weaker compared to the training
augmentation to make testing samples as realistic looking
as possible.

E. Additional Results
Figure 4 shows additional qualitative comparisons with

MODNet. Our method is consistently more robust. Figure

Composited Frames Std Dev

Figure 2: Composited training samples. Last column shows the
standard deviation of each pixel across time to visualize motion.

Figure 3: Example testing samples. The augmentation is only ap-
plied on image foreground and background. The augmentation
strength is weaker to make samples look more realistic.

5 compares temporal coherence with MODNet. MODNet
has flicker on low-confidence regions whereas our results
are coherent. Figure 6 shows additional examples of our
model’s recurrent hidden state. It shows that our model has
learned to store useful temporal information in its recurrent
state and is capable of forgetting useless information upon
shot cuts.
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Input Ours MODNet Input Ours MODNet

Figure 4: More qualitative comparison with MODNet.
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Figure 5: Temporal coherence comparison. Our result is temporally coherent, whereas MODNet produces flicker around the handrail. This
is because MODNet processes every frame as indepdendent images, so its matting decision is not consistent.
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(a) Video with a static background.
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(b) Video with a handheld camera and cut shots.

Figure 6: More examples of the recurrent hidden states. The first example with the static background clearly shows our model reconstructs
the occluded background region over time. The second example with a handheld camera shows that our model still attempts to reconstruct
the background, and it has learned to forget useless recurrent states on shot cuts.
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