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Figure 1. Influence of temperature parameter τ during inference
on perception and fidelity. As opposed to AdFlow, ESRGAN and
RRDB have only a single operating point. (4× super-resolution)

In this supplementary material, we first provide further
details on the user study in Sec. 1. Secondly, we provide
an analysis of the sampling temperature in Sec 2. Third,
we present additional details about the minimally general-
ized L1 loss in Sec. 3. Finally, we provide a further qual-
itative and quantitative comparison of AdFlow with other
state-of-the-art methods in Sec. 4. Additional visual re-
sults, used in our study, will be available on the project page
git.io/AdFlow.

1. User Study

As described in Sec. 4.1 in the main paper, we conduct
the user study. The GUI interface is shown in Figure 4. We
ask the user to evaluate which image of the two looks more
realistic. To select the chosen image, the user presses the 1
key for the left and 2 key for the right images. Once a se-
lection was made, the user can see the next image using the
arrow right key until they have completed all tasks. Finally,
the form is submitted using the button on the top right.
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Figure 2. Influence of temperature parameter τ during inference
on perception and fidelity. As opposed to AdFlow, ESRGAN and
RRDB have only a single operating point. (6× super-resolution)
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Figure 3. Influence of temperature parameter τ during inference
on perception and fidelity. As opposed to AdFlow, ESRGAN and
RRDB have only a single operating point. (8× super-resolution)

https://www.git.io/AdFlow


Figure 4. Screenshot of the web GUI of our user study. The ‘Reference’ provides an overview and indicates which part of an image should
be considered. The images ‘Zoom 1’ and ‘Zoom 2’ are the two candidates, where the latter was selected to look more realistic.

To increase the data quality, we use a filtering mecha-
nism. For that, we add redundant questions and reject sub-
missions that have a low self-consistency. A visualization of
results of the study results is shown in Fig. 5. The green bars
display the percentage of votes favoring the photo-realism
of AdFlow, while the red bars show the percentage favoring
the other method. We display the statistical significance by
showing the 95% confidence interval in black. Examples for
images used in our study are shown in visuals.html.

2. Analysis of Sampling Temperature

Here, we analyze the trade-off between the image qual-
ity, in terms of LPIPS [11], and the consistency to the low-
resolution input in terms of LR PSNR when varying the
sampling temperature. We sample from the latent space
with a Gaussian prior distribution z ∼ N (0, τI) with vari-
ance τ . The latter is usually termed the sampling tempera-
ture [4]. Similar to [8] we can set the operation point by ad-
justing the temperature τ . Figures 1, 2 and 3 show that ESR-
GAN [6] trades off much more low-resolution consistency

to improve the perceptual quality than AdFlow. The best
trade-off is achieved at τ = 0.9 for BaseFlow and τ = 1 for
AdFlow, as used in the main paper.

3. Minimal L1 generalization
Here we provide further theoretical and empirical analy-

sis when generalizing the L1 loss with normalizing flows.

3.1. Relation of Flow loss to L1

We here derive the generalized L1 objective (Eq. (4) in
the main paper) from the Normalizing Flow formulation as
a 1-layer special case. Let z ∼ pz(z) =

1
2D

e−∥z∥1 be stan-
dard Laplace. We use the function f defined as (Eq. (3) of
the main paper),

z = f(y;x) =
y − g(x)

b(x)
. (1)

we obtain the inverse as,

y = f−1(z;x) = b(x) · z + g(x) (2)
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Figure 5. User study results, as the percentage of votes favoring the photo-realism of AdFlow (green) versus each other method (red). A
bar represents 1500 user votes. The 95% confidence interval is in black. We compare on DIV2K, BSD100, Urban100 for 4×, 6×, and 8×.
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Figure 6. Qualitative comparison of standard approach and L1 with learned variance on the DIV2K [1] validation set. (8×)

Since z∼pz(z) is a standard Laplace distribution, it is easy
to see that y ∼ p(y|x; θ) = L(y; g(x), b(x)) as given by
Eq. (4) in the main paper, that is

− log p(y|x; θ) ∝
∥∥∥∥y − g(x)

b(x)

∥∥∥∥
1

+
∑
ijc

log b(x)ijc . (3)

Hence, (1) is the flow f of (3). Inserting (1) into the NLL
formula for flows (Eq. (6a) in the main paper) gives,

− log p(y|x, θ)=− log p(z)−log

∣∣∣∣det ∂fθ∂y
(y;x)

∣∣∣∣
= − log

1

2D
e−∥ y−g(x)

b(x)
∥1 − log |det diag(

1

b(x)
)|

= D log 2 +

∥∥∥∥y − g(x)

b(x)

∥∥∥∥
1

− log |
∏
ijc

1

b(x)ijc
|

∝
∥∥∥∥y − g(x)

b(x)

∥∥∥∥
1

+
∑
ijc

log b(x)ijc . (4)

Here, the Jacobian ∂fθ
∂y = diag( 1

b(x) ) is a diagonal matrix
with elements 1

b(x)ijk
. The final result thus corresponds to

the NLL derived directly in (3). We therefore conclude that
the generalized L1 objective is a special case given by the
1-layer normalizing flow defined in (1).

3.2. Empirical Analysis

We report results for the intermediate step of predicting
an adaptive variance according to the Laplacian model de-
scribed in Section 3.1, Equations (3)-(4) of the main pa-
per. Those three channels predict the log-scale a(x) =
log(b(x)) of the Laplace distribution. The loss in Eq. (4)
of the main paper can thus be written as,

− log p(y|x; θ) ∝
∥∥∥∥ y − g(x)

exp(a(x))

∥∥∥∥
1

+
∑
ijc

a(x)ijc . (5)

We notice that even this extension of the L1 objective
reduces the conflict with the adversarial loss to some extent.
The effective removal of artifacts for 8× super-resolution
is especially apparent in the first row of Figure 6 between
ESRGAN [10] and ESRGAN + Adaptive Variance. Our
further generalization of L1 loss continues to improve the
quality of the super-resolutions.

As the increase in visual quality alone would not be
a good indicator for a reduced conflict of objectives, we
also report the low-resolution consistency in Table 1 which
improves by 2.91dB from ESRGAN [10] to ESRGAN
+ Adaptive Variance. An additional generalization to
BaseFlow and AdFlow leads to a further improved low-
resolution consistency. Based on observing an improved



PSNR ↑ SSIM ↑ LPIPS ↓ LR-PSNR ↑
RRDB [10] 25.52 0.697 0.419 45.31
RRDB [10] + Adaptive Variance 25.47 0.696 0.418 44.51
ESRGAN [10] 22.14 0.578 0.277 31.28
ESRGAN [10] + Adaptive Variance 22.94 0.593 0.280 34.19
BaseFlowRRDB 23.58 0.595 0.253 49.78
AdFlowRRDB 23.45 0.602 0.253 47.54

Table 1. Quantitative results of standard approach and L1 with
learned variance on the DIV2K [1] validation set. “Adaptive vari-
ance” indicates the generalized L1 loss with predicted variance, as
described in Sec. 3. (8×)

PSNR ↑ SSIM ↑ LPIPS ↓ LR-PSNR ↑

D
IV

2K

Bicubic 26.69 0.766 0.409 38.69
RRDB [10] 29.44 0.844 0.253 49.17
ESRGAN [10] 26.20 0.747 0.124 39.01
RankSRGAN [12] 26.55 0.750 0.128 42.33
SRFlow [8] 27.08 0.756 0.120 49.97
BaseFlow 27.21 0.760 0.118 49.88
AdFlow 27.02 0.768 0.132 45.17

B
SD

10
0

Bicubic 22.40 0.508 0.713 37.13
RRDB [10] 23.58 0.572 0.554 45.26
ESRGAN [10] 20.99 0.462 0.332 31.68
SRFlow [8] 21.76 0.467 0.335 51.01
BaseFlow 22.03 0.478 0.325 50.17
AdFlow 22.01 0.486 0.327 48.78

U
rb

an
10

0

Bicubic 19.31 0.477 0.686 33.93
RRDB [10] 21.15 0.603 0.401 43.33
ESRGAN [10] 18.43 0.475 0.306 28.88
SRFlow [8] 19.29 0.501 0.309 48.11
BaseFlow 19.72 0.513 0.304 48.71
AdFlow 19.04 0.506 0.278 44.67

Table 2. Approximations for perceptual quality on the sets DIV2K
(val.), BSD100, and Urban100 (4×). Since [2, 3, 5, 7, 8, 9, 10]
showed the limitations of calculated metrics for SR our main met-
ric is the human study.

visual quality and low-resolution consistency, we conclude
that the minimally generalized L1 loss reduces the conflict
in objectives, which further validates our strategy of replac-
ing the L1 with a more flexible generalization.

4. Detailed Results
In this section, we provide an extended quantitative and

qualitative analysis of the same BaseFlow and AdFlow net-
works evaluated in the main paper. For completeness, we
here provide the PSNR, SSIM and LPIPS on the DIV2K,
BSD100, and Urban100 datasets. Results are reported in
Tables 2, 3 and 4. However, note that these metrics do not
well reflect photo-realism, as discussed in Sec. 4.1 in the
main paper.

Further qualitative results for the scale levels
4×, 6× and 8× are provided in Figures 7, 8 and 9
respectively.
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