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Abstract

We provide the following additional information:
• Details of evaluation metrics :

– image quality,
– speed,
– power and cpu usage.

• Extended analysis :
– speed vs parameters,
– additional edge device (GTX 1080 MaxQ),
– qualitative evaluations,
– effect of datasets and metrics,
– magnified scatter plots.

• Reproducibility :
– test results,
– pytorch models and code.

A. Evaluation Metrics
Image quality. Quantitative evaluations in our exper-

iments include objective metrics PSNR and SSIM. These
are reference–based metrics that measure the difference be-
tween an impaired image and ground truth. Higher values
are better in both cases. The PSNR (range 0 to ∞) is a
log–scale version of mean–square–error and SSIM (range
0 to 1) uses image statistics to better correlate with human
perception. Full expressions are as follows:

PSNR(X,Y ) = 10 · log10
(
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)
, (1)
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where MSE = E
[
(X − Y )2

]
is the mean square error of

the difference between X and Y ; µX and µY are the aver-
ages of X and Y , respectively; σ2

X and σ2
Y are the variances

of X and Y , respectively; σXY is the covariance of X and
Y; c1 = 6.5025 and c2 = 58.5225.

Benchmark in the literature can show big differences in
PSNR and SSIM metrics due to different ways to evaluate
color. For real–time applications it is common to process
color images in YUV space, and the super–resolution task
applies only to the luminance channel Y . Color in U and V

channels can use a faster bicubic upscaler with small impact
in perceptual quality. We follow the implementation in [4]
using a conversion of RGB to YUV color–spaces following
the BT.709 standard, including offsets that are often avoided
in other implementations.

In Appendix B and C we also provide measurements of
the perceptual quality metric LPIPS defined in [3] and im-
plemented using the PIQA library [2].

Speed. We run each model to output a set of 14 Full–HD
images, downscaling appropriately from randomly selected
images of the DIV2K dataset [1]. We use 16–bit floating
point precision during inference. For each image we run
the model 10 times to avoid warm–up effects, measuring:
the minimum CPU and GPU processing time from profiler’s
data. We computed the speed of a model using the total
number of pixels processed (considering only one run per
image) divided by the processing time (using the minimum
time over each one of the 10 runs). To make the measure-
ment of speed easier to read we use units of [FHD/s], this
is, number of Full–HD pixels (1920 × 1080) per second.
Figure 1 shows the code used to parse Pytorch’s profiler
output to obtain the CPU and GPU processing time.

Power and CPU usage. We run each model to output a
set of 14 Full–HD images, downscaling appropriately from
randomly selected images of the DIV2K dataset [1]. We
use 16–bit floating point precision during inference. Dur-
ing this process we monitor the maximum power consump-
tion using nvidia-smi for GTX 1080 Max–Q GPU, and
tegrastats for Jetson AGX Xavier. We register the
maximum power measured in this process. The power data
provided by Max–Q driver is in units of watts, whereas the
AGX device uses units of milliwatts. The AGX device al-
lows different profiles for power consumption and in our
experiments we used 30 Watts.

The Raspberry Pi 400 device does not include power sen-
sors and in this case we replace the power measurement
by CPU usage, monitor by parsing the top command with
delay–time of 0.05s and registering the average CPU read-
ing during the inference process.
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1 import numpy as np
2 import torch.autograd.profiler as profiler
3

4 def str_to_time(s):
5 if s.endswith('ms'):
6 return float(s[:-2])*1e-3
7 if s.endswith('us'):
8 return float(s[:-2])*1e-6
9 return float(s[:-1])

10

11 def speed(model, input):
12 dt = np.inf
13 for _ in range(10):
14 with profiler.profile(
15 record_shapes=True, use_cuda=True
16 ) as prof:
17 with profiler.record_function(
18 'model_inference'
19 ):
20 output = model(input)
21 dt1 = str_to_time(
22 prof.key_averages().table(
23 sort_by='cpu_time_total', row_limit=10
24 ).split(
25 'CPU time total: '
26 )[1].split('\n')[0]
27 )
28 dt2 = str_to_time(
29 prof.key_averages().table(
30 sort_by='cpu_time_total', row_limit=10
31 ).split(
32 'CUDA time total: '
33 )[1][:-1]
34 )
35 dt = min(dt1+dt2, dt)
36

37 pix = np.asarray(output.shape).prod()
38

39 return pix / (dt * 1920*1080)

Figure 1. Python function used to measure the speed of models in
Pytorch v1.8. It runs a model 10 times to avoid warm–up effects.
Then, it parses the output of Pytorch profiler to get both CPU and
GPU runtime. The speed is the number of output pixels divided
by the minimum runtime in the 10 runs.

B. Extended Analysis

Speed vs parameters. In Figure 2 we show the rela-
tionship between the size of the model, given by the num-
ber of parameters, and the execution speed when running
the models on GPU devices. We observe that smaller mod-
els run faster, and the speed increases exponentially. The
non–linear relation between speed and number of parame-
ters becomes critical under: 5, 000 parameters for 2× up-
scaling factor, 10, 000 parameters for 3× upscaling factor,
and 15, 000 parameters for 4× upscaling factor. This shows
the importance of focusing on speed compared to number
of parameters in our study. Research on lightweight SR ar-
chitectures often focuses on number of parameters and typ-
ically use several hundred thousand parameters where the
non–linearity is still not critical.

Additional device. In Figure 3 we show scatter plots in-
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Figure 2. Example of the change in speed of the models with re-
spect to their number of parameters for experiments on the Jetson
AGX Xavier device. Models become faster at an exponential rate
as the number of parameter reduces.

cluding Nvidia GeForce GTX–1080 Max–Q GPU. This is a
mobile high–end GPU from the Pascal series typically used
for laptop computers. The power consumption of the Max–
Q design ranges between 90 and 110 Watt, compared to 30
Watt used in the Jetson AGX Xavier. Although much more
powerful than a Raspberry Pi and Jetson AGX devices, the
GTX 1080 Max–Q device can fit in high–end display TV
panels and thus serve a different range of applications for
edge devices. Consequently, Figure 3 shows a performance
that can deliver 8K videos in real–time (even with 16–bit
floating point precision). We also observe that ESPCN per-
formance improves for 3× and 4× upscaling factors, indi-
cating the important effect of the increased number of cores
in GPU architectures as well as a significant increase in
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Figure 3. Scatter plot to compare speed, in number of Full–HD pixels per second, with respect to quality, measured as PSNR for the BSDS–
100 dataset. A total of 1, 185 models were identically trained considering different upscaling factors (2×, 3× and 4×) and architectures
(eSR, ESPCN and FSRCNN). We run all models on edge devices: GTX–1080 Max–Q (GPU with 16–bit floating point precision), Jetson
AGX Xavier (GPU with 16–bit floating point precision) and Raspberry Pi 400 (CPU with 32–bit floating point precision). Magnified plots
with model annotations are provided in the Figures 20, 21, 22, 14, 15 and 16.
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Figure 4. Scatter plot to compare speed, in number of Full–HD pixels per second, with respect to quality, measured as LPIPS for the
BSDS–100 dataset. Lower values of LPIPS mean better quality as opposed to PSNR where larger values are better. Compared with the
same case but using PSNR quality measure in Figure 3, eSR–TM performs much better and Bicubic shows the worst quality.
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1 >>> import pickle
2 >>> test = pickle.load(open('tests.pkl', 'rb'))
3 >>> test['Bicubic_s2']
4 {'psnr_Set5': 33.72849620514912,
5 'ssim_Set5': 0.9283912810369976,
6 'lpips_Set5': 0.14221979230642318,
7 'psnr_Set14': 30.286027790636204,
8 'ssim_Set14': 0.8694934108301432,
9 'lpips_Set14': 0.19383049915943826,

10 'psnr_BSDS100': 29.571233006609656,
11 'ssim_BSDS100': 0.8418117904964167,
12 'lpips_BSDS100': 0.26246454380452633,
13 'psnr_Urban100': 26.89378248655882,
14 'ssim_Urban100': 0.8407461069831571,
15 'lpips_Urban100': 0.21186692919582129,
16 'psnr_Manga109': 30.850672809780587,
17 'ssim_Manga109': 0.9340133711400112,
18 'lpips_Manga109': 0.102985977955641,
19 'parameters': 104,
20 'speed_AGX': 18.72132628065749,
21 'power_AGX': 1550,
22 'speed_MaxQ': 632.5429857814075,
23 'power_MaxQ': 50,
24 'temperature_MaxQ': 76,
25 'memory_MaxQ': 2961,
26 'speed_RPI': 11.361346064182795,
27 'usage_RPI': 372.8714285714285}

Figure 5. Example of how to read our test data from the Python
dictionary file tests.pkl.

power consumption.

Qualitative evaluation. In Figures 11, 12 and 13 we
show example output images for different models. These
models were selected by moving in an approximately op-
timal trajectory in the Speed vs Quality (SQ) plane for the
Jetson AGX Xavier device. As mentioned before, the best
advantage of edge–SR models is observed for 2× upscaling
factor. This is both the most difficult and important factor
for applications due to the high input throughput in high
resolution displays (e.g. HD to FHD). The classic bicubic
upscalers offers over–smooth outputs that are somehow ef-
fective to reduce jaggy artifacts. edge–MAX models can
significantly improve sharpness with limited control over
jaggies. Next, edge–TM and edge–TR models show the best
trade–off with very similar performance. These models are
more effective at reducing jaggies before multi–layer net-
works like edge–CNN and ESPCN become better with both
sharp and smooth edges.

In Figure 4 we show a few scatter plots of the trade–
off between image quality and runtime performance using
the perceptual quality metric LPIPS [3] for the BSDS–100
dataset. Here, lower values of LPIPS mean better quality as
opposed to PSNR where larger values are better. Compared
with the same case but using PSNR quality measure in Fig-
ure 3, eSR–TM performs much better and Bicubic shows
the worst quality.

At 3× and 4× upscaling factor the pattern is similar but
it becomes more difficult for single–layer models to effec-

1 import torch
2 from torch import nn
3

4 class edgeSR_MAX(nn.Module):
5 def __init__(self, C, k, s):
6 super().__init__()
7

8 self.pixel_shuffle = nn.PixelShuffle(s)
9 self.filter = nn.Conv2d(

10 in_channels=1,
11 out_channels=s*s*C,
12 kernel_size=k,
13 stride=1,
14 padding=(k-1)//2,
15 bias=False,
16 )
17

18 def forward(self, input):
19 return self.pixel_shuffle(
20 self.filter(input)
21 ).max(dim=1, keepdim=True)[0]

Figure 6. Pytorch v1.8 implementation of edge–SR Maximum
(eSR–MAX) single–layer architecture.

1 import torch
2 from torch import nn
3

4 class edgeSR_TM(nn.Module):
5 def __init__(self, C, k, s):
6 super().__init__()
7

8 self.pixel_shuffle = nn.PixelShuffle(s)
9 self.softmax = nn.Softmax(dim=1)

10 self.filter = nn.Conv2d(
11 in_channels=1,
12 out_channels=2*s*s*C,
13 kernel_size=k,
14 stride=1,
15 padding=(k-1)//2,
16 bias=False,
17 )
18

19 def forward(self, input):
20 filtered = self.pixel_shuffle(
21 self.filter(input)
22 )
23 B, C, H, W = filtered.shape
24

25 filtered = filtered.view(B, 2, C, H, W)
26 upscaling = filtered[:, 0]
27 matching = filtered[:, 1]
28 return torch.sum(
29 upscaling * self.softmax(matching),
30 dim=1, keepdim=True
31 )

Figure 7. Pytorch v1.8 implementation of edge–SR Template
Matching (eSR–TM) single–layer architecture.

tively reduce jaggy artifacts. Results get worsen and we
observe an increased gap between bicubic and other archi-
tectures. ESPCN becomes better at high quality ranges and
overcomes edge–SR models for the most part. Finally we
note that trade–off evaluations at 3× and 4× upscaling fac-
tors could be misleading, as flickering video artifacts are
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1 import torch
2 from torch import nn
3

4 class edgeSR_TR(nn.Module):
5 def __init__(self, C, k, s):
6 super().__init__()
7

8 self.pixel_shuffle = nn.PixelShuffle(s)
9 self.softmax = nn.Softmax(dim=1)

10 self.filter = nn.Conv2d(
11 in_channels=1,
12 out_channels=3*s*s*C,
13 kernel_size=k,
14 stride=1,
15 padding=(k-1)//2,
16 bias=False,
17 )
18

19 def forward(self, input):
20 filtered = self.pixel_shuffle(
21 self.filter(input)
22 )
23 B, C, H, W = filtered.shape
24

25 filtered = filtered.view(B, 3, C, H, W)
26 value = filtered[:, 0]
27 query = filtered[:, 1]
28 key = filtered[:, 2]
29 return torch.sum(
30 value * self.softmax(query*key),
31 dim=1, keepdim=True
32 )

Figure 8. Pytorch v1.8 implementation of edge–SR TRansformer
(eSR–TR) single–layer architecture.

likely to become visible at this point and video SR solu-
tions might be needed. For this reason, the results at 2× are
arguably the most important for practical applications.

Effect of datasets and metrics. Scatter plots in the
main text use only PSNR metric measured in the BSDS–100
dataset. In Figure 10 we show the effect of changing both
the metric, from PSNR to SSIM, and dataset, among Set5,
Set14, BSDS–100, Urban–100 and Manga–109. The range
of values and relative position of scatter points changes. For
example, SSIM shows a larger margin in image quality be-
tween bicubic and other models. PSNR values show signif-
icant changes depending on the dataset. Nevertheless, the
trade–off trajectory and the advantage shown by different
architectures remains the same.

Magnified scatter plots. It is useful to identify the
hyper–parameters of each specific model in scatter plots.
Figures 20, 21, 22, 14, 15 and 16 show magnified plots us-
ing all the page width and include annotations with model
hyper–parameters. The annotations are useful at middle and
high speed ranges where data is more sparse. In the high
image quality range the performance of different models be-
come clustered and the annotations are not readable. Here,
we recommend to look at Figures 11, 12 and 13 to identify
the best models. Finally, we make all test data available in
a Python dictionary file (see Appendix C).

1 import torch
2 from torch import nn
3

4 class edgeSR_CNN(nn.Module):
5 def __init__(self, C, D, S, s):
6 super().__init__()
7

8 self.softmax = nn.Softmax(dim=1)
9 if D == 0:

10 self.filter = nn.Sequential(
11 nn.Conv2d(D, S, 3, 1, 1),
12 nn.Tanh(),
13 nn.Conv2d(
14 in_channels=S,
15 out_channels=2*s*s*C,
16 kernel_size=3,
17 stride=1,
18 padding=1,
19 bias=False,
20 ),
21 nn.PixelShuffle(s),
22 )
23 else:
24 self.filter = nn.Sequential(
25 nn.Conv2d(1, D, 5, 1, 2),
26 nn.Tanh(),
27 nn.Conv2d(D, S, 3, 1, 1),
28 nn.Tanh(),
29 nn.Conv2d(
30 in_channels=S,
31 out_channels=2*s*s*C,
32 kernel_size=3,
33 stride=1,
34 padding=1,
35 bias=False,
36 ),
37 nn.PixelShuffle(s),
38 )
39

40 def forward(self, input):
41 filtered = self.filter(input)
42 B, C, H, W = filtered.shape
43

44 filtered = filtered.view(B, 2, C, H, W)
45 upscaling = filtered[:, 0]
46 matching = filtered[:, 1]
47 return torch.sum(
48 upscaling * self.softmax(matching),
49 dim=1, keepdim=True
50 )

Figure 9. Pytorch v1.8 implementation of edge–SR CNN (eSR–
CNN) multi–layer architecture.

C. Reproducibility
Test results. Test results are provided in the Python dic-

tionary file tests.pkl using the native pickle module. A
sample code to read the file is provided in Figure 5. The
keys of the dictionary identify the name of each model and
its hyper–parameters using the following format:

• ’Bicubic s#’,

• ’eSR-MAX s# K# C#’,

• ’eSR-TM s# K# C#’,

• ’eSR-TR s# K# C#’,

• ’eSR-CNN s# C# D# S#’,

5

https://www.dropbox.com/s/c52or2cyqfofpxg/tests.pkl


• ’ESPCN s# D# S#’, or

• ’FSRCNN s# D# S# M#’,

where # represents an integer number with the value of the
correspondent hyper–parameter. For each model the data
of the dictionary contains a second dictionary with the in-
formation displayed in Figure 5. This includes: number of
model parameters; image quality metrics PSNR, SSIM and
LPIPS measured in 5 different datasets; as well as power,
speed, CPU usage, temperature and memory usage for de-
vices AGX (Jetson AGX Xavier), MaxQ (GTX 1080 MaxQ)
and RPI (Raspberry Pi 400).

Pytorch implementations. Figures 6, 7, 8 and 9 show
the Python code to implement all proposed edge–SR mod-
els using the Pytorch tensor processing framework version
1.8. Model files and sample code are also available in
https://github.com/pnavarre/eSR.
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Figure 10. Example of the effect of different metric (PSNR/ SSIM) and datasets in the trade–off between image quality and runtime perfor-
mance. We observe that even though the range of values and relative positions change, edge–SR models remain with better performance at
high speed, and multi–layer networks remain better at low speed.
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Figure 11. Example output images in the trajectory through the trade–off between image quality and runtime performance for 2× upscaling
on a Jetson AGX Xavier edge device.
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Figure 12. Example output images in the trajectory through the trade–off between image quality and runtime performance for 3× upscaling
on a Jetson AGX Xavier edge device.
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Figure 13. Example output images in the trajectory through the trade–off between image quality and runtime performance for 4× upscaling
on a Jetson AGX Xavier edge device.
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Figure 14. Speed of 2× image SR models, measured in Full–HD pixels per second on a Jetson AGX Xavier GPU using 16–bit floating
point precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 15. Speed of 3× image SR models, measured in Full–HD pixels per second on a Jetson AGX Xavier GPU using 16–bit floating
point precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 16. Speed of 4× image SR models, measured in Full–HD pixels per second on a Jetson AGX Xavier GPU using 16–bit floating
point precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 17. Speed of 2× image SR models, measured in Full–HD pixels per second on a Raspberry Pi 400 CPU using 32–bit floating point
precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 18. Speed of 3× image SR models, measured in Full–HD pixels per second on a Raspberry Pi 400 CPU using 32–bit floating point
precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 19. Speed of 4× image SR models, measured in Full–HD pixels per second on a Raspberry Pi 400 CPU using 32–bit floating point
precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 20. Speed of 2× image SR models, measured in Full–HD pixels per second on a GTX 1080 Max–Q GPU using 16–bit floating
point precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 21. Speed of 3× image SR models, measured in Full–HD pixels per second on a GTX 1080 Max–Q GPU using 16–bit floating
point precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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Figure 22. Speed of 4× image SR models, measured in Full–HD pixels per second on a GTX 1080 Max–Q GPU using 16–bit floating
point precision, with respect to image quality, measure as PSNR in the BSDS–100 dataset.
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