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Data Augmentation Parameters 1-shot 3-shot 5-shot
No Augmentation - 23.6 19.4 17.2

Image Jitter r1 = 0.8 41.3 37.52 28.9
Scale r2 = [0.9, 1.1] 27.1 26.5 23.1

Translate r3 = [-0.1, 0.1] 29.8 27.4 25.2
Rotation (R) r4 = [-180◦, 180◦] 17.8 14.8 12.1

R + Image Jitter r4 and r1 33.5 30.1 28.8
R + Scale r4 and r2 20.3 19.1 18.5

R + Translate r4 and r3 22.8 20.1 18.7

Table 1. Mean Absolute Error given by PEN trained on various
data augmentation method in few shot setting. r1: probability with
which a pixel could be jittered. r2: ratio range by which image is
resized. r3: ratio range by which image can be translated left or
right. r4: angle range by which image can be rotated with step size
of 0.1◦.

1. Effectiveness of Data Augmentation in PEN
We explore the effectiveness of various data augmenta-

tion methods while training PEN. Our choise of augmenta-
tions and its ranges are inspired from the SimCLR [1]. We
train the PEN in few shot setting on Rain 100L. We use
image jitter, scale, translate, rotation and its combination.
We evaluate the performance of PEN on Mean Absolute Er-
ror (MAE) which is the mean absolute difference between
predicted rain probability p̂ and the ground truth rain prob-
ability IL. The MAE equation is given by:

MAE = abs(p̂− IL) (1)

From Table 1, we can observe that rotation as data aug-
mentation method gives us the least MAE.

2. Additional Results
More results on object detection, semantic segmentation,

as well as qualitative results in 1-shot, 3-shot and 5-shot set-
tings on Rain 100L and DDN-SIRR datasets are provided
below. The results show that our method provides signifi-
cant improvement over the baseline methods across differ-

ent backgrounds with just a few examples, highlighting the
usefulness of the proposed methodology.
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Input Rainy Image ID-CGAN [7] Wei et al. [5] Yasarla et al. [6] Ours Rainy2Clean Ground Truth
Figure 1. Qualitative deraining results in 1-shot setting: Qualitative results on Rain 100L and DDN-SIRR datasets

Input Rainy Image ID-CGAN [7] Wei et al. [5] Yasarla et al. [6] Ours Rainy2Clean Ground Truth
Figure 2. Qualitative deraining results in 3-shot setting: Qualitative results on Rain 100L and DDN-SIRR datasets

Input Rainy Image ID-CGAN [7] Wei et al. [5] Yasarla et al. [6] Ours Rainy2Clean Ground Truth
Figure 3. Qualitative deraining results in 5-shot setting: Qualitative results on Rain 100L and DDN-SIRR datasets



 (a) Input Rainy Image            (b) Yasarla et al.                      (c) Ours                       (d) Rainy2Clean               (e) Ground Truth

Figure 4. Additional Semantic Segmentation Results
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Figure 5. Additional comparison with image-to-image translation methods.



 (a) Yasarla et al.           (b) Ours             (c) Rainy2Clean

Figure 6. Additional Object Detection Results


