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A. Overview
In this document, we include additional qualitative re-

sults that we could not fit in the main paper. We further
explain in detail the different part-orderings and architec-
tural variants used in our ablation study. We will release
our code and pre-trained models upon acceptance.

B. Training Details
We train our model with weight 10 assigned to Lr and 1

assigned to Lt and Ls. We use Adam optimizer with stan-
dard parameters and a learning rate of 1e−3 with a decay
of 0.9 every 5000 steps of training. During each training
step, we execute our model 5 times and backpropagate using
the minimum-over-N (MoN) [1] loss. We train each model
till convergence. Training takes 2.5 days for the chair, 1.5
days for the lamp and 4 days for the table category on the
NVIDIA RTX 2080Ti GPU.

Baseline Methods. We train the baseline methods B-
Global [3, 5], B-LSTM [7] using the open-source code pro-
vided by the authors of [2]. We conduct training using the
standard hyper-parameter settings provided by the authors.
For the baseline B-DGL [2], we use their pre-trained mod-
els.

C. Shape Recovery from Latent Space
Our latent space contains information about the shape

structure. For shape recovery, we utilize the point-cloud de-
coder of TreeGAN [6]. Although TreeGAN was developed
for point-cloud generation, we customize it for our applica-
tion by removing the discriminator.

We concatenate the forward and reverse hidden state of
the last time-step g

(t)
1 and h

(t)
N and process it using an

MLP to a compact latent code y(t) ∈ R256. We sam-
ple 2048 points from each assembled shape to create the
ground truth. The network architecture utilizes 5 layers
of tree-based graph convolution with feature dimensions
of {64, 32, 32, 16, 3} and an upsampling of {1, 2, 4, 8, 32}.
The network is trained with a learning rate of 1e−4 for 100
epochs. We conduct our experiments on the two largest cat-
egories of our dataset the chair and table. Our additional

qualitative results are included in Figure 4. For more detail
on the network architecture please refer to [6].

D. Optimal Order for Assembly
In our main paper, we presented various ways to order

part-components and justified that the top to bottom order
of a shape is the optimal one. In this section, we explain
each of these orders in more detail. We use A to represent
the inter-part adjacency matrix and B to represent a group
of similar parts.

• Part-wise connectivity order. In this ordering we
maintain a queue to decide the order in which to pro-
cess parts. We start at a random part Pi and add to
the queue all parts Pj directly connected to it, i.e,
A(i, j) = 1. If there are multiple neighbours for a
given part, we consider them in the order they appear
in the adjacency matrix. We iteratively carry out this
process until the all parts are considered.

• Group-wise connectivity order. In this setting, we
create a group adjacency matrix by combining similar
parts. Two groups Bm and Bn are connected if for any
Pi ∈ Bm and Pj ∈ Bn, A(i, j) = 1. Then, similar to
part-wise connectivity, we start from a random group
Bk and iteratively processing the neighbouring groups.

• Volume Ordering. We sort parts from minimum vol-
ume to maximum volume. We measure volume as the
axis-aligned bounding box volume of the component
point-cloud in its canonical PCA orientation. If a com-
ponent point-cloud belongs to a part-group, we assign
it minimum volume among the components belonging
that group.

• Central-Part Connectivity. We define the central part
as the one with maximum neighbours. We then follow
a similar procedure as part-wise connectivity starting
at the central part.

• Top-Bottom Order. We consider parts in the canoni-
cal top-bottom ordering of the PartNet [4] dataset. This
order resembles the group-connectivity order, with
similar groups being placed together. However, the
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starting group is the group occurring at the top of the
assembled object.

• Random Order: We randomly order the parts.

E. Structural Variants
In this section, we discuss the structural variations of our

framework.

• Bottom to Top Encoding. We use a unidirectional
GRU, which operates in the top to bottom ordering.

• Top to Bottom Encoding. We use a unidirectional
GRU, which operates in the bottom to top ordering.

• Initializing Hidden States. The hidden states at sub-
sequent time-step (t+ 1) are initialized with final hid-
den state of the current time-step (t).

• Noise in Pose Decoder. In this variant, we evalu-
ate the performance of our algorithm with part-wise
randomness. We do this by adding noise to the pose
decoder (part-wise randomness) instead of the hidden
state (global randomness).

• Without Graph Learning. We remove the graph
learning module of our algorithm and only test the per-
formance of our progressive framework.

• Sequential before Graph. The sequential module is
incorporated first to obtain the updated features. The
updated features are processed along with the part-
message for pose-regression.

F. Additional Qualitative Results
In this section, we present additional qualitative results

of our algorithm on the table (Figure 1), chair (Figure 2)
and lamp (Figure 3) category. We also include additional
results of shape recovery in Figure 4.
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B-Global B-LSTM B-DGL Ours Ground truth
Figure 1. Additional qualitative comparison on the PartNet Table dataset
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B-Global B-LSTM B-DGL Ours Ground truth
Figure 2. Additional qualitative comparison on the PartNet Chair dataset
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B-Global B-LSTM B-DGL Ours Ground truth
Figure 3. Additional qualitative comparison on the PartNet Lamp dataset
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Prediction GT Prediction GT
Figure 4. Additional qualitative results on shape recovery from our hidden state

9881



References
[1] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a sin-
gle image. Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017.

[2] Jialei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin
Shao, Baoquan Chen, Leonidas Guibas, and Hao Dong. Gen-
erative 3d part assembly via dynamic graph learning. The
IEEE Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[3] Jun Li, Chengjie Niu, and Kai Xu. Learning part genera-
tion and assembly for structure-aware shape synthesis. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
34(07):11362–11369, 2020.

[4] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tri-
pathi, Leonidas J Guibas, and Hao Su. Partnet: A large-scale
benchmark for fine-grained and hierarchical part-level 3d ob-
ject understanding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
909–918, 2019.

[5] Nadav Schor, Oren Katzir, Hao Zhang, and Daniel Cohen-Or.
Componet: Learning to generate the unseen by part synthesis
and composition. Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8759–8768, 2019.

[6] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d
point cloud generative adversarial network based on tree struc-
tured graph convolutions. Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3859–3868,
2019.

[7] Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan
Chen. Pq-net: A generative part seq2seq network for 3d
shapes. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 829–838, 2020.

9882


