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A. Overview

In this document, we include additional qualitative re-
sults that we could not fit in the main paper. We further
explain in detail the different part-orderings and architec-
tural variants used in our ablation study. We will release
our code and pre-trained models upon acceptance.

B. Training Details

We train our model with weight 10 assigned to £, and 1
assigned to £; and £,. We use Adam optimizer with stan-
dard parameters and a learning rate of 1e~3 with a decay
of 0.9 every 5000 steps of training. During each training
step, we execute our model 5 times and backpropagate using
the minimum-over-N (MoN) [1]] loss. We train each model
till convergence. Training takes 2.5 days for the chair, 1.5
days for the lamp and 4 days for the table category on the
NVIDIA RTX 2080Ti GPU.

Baseline Methods. We train the baseline methods B-
Global [3,15], B-LSTM [7] using the open-source code pro-
vided by the authors of [2]. We conduct training using the
standard hyper-parameter settings provided by the authors.
For the baseline B-DGL [2]], we use their pre-trained mod-
els.

C. Shape Recovery from Latent Space

Our latent space contains information about the shape
structure. For shape recovery, we utilize the point-cloud de-
coder of TreeGAN [6]. Although TreeGAN was developed
for point-cloud generation, we customize it for our applica-
tion by removing the discriminator.

We concatenate the forward and reverse hidden state of
the last time-step ggt) and hg\t,) and process it using an
MLP to a compact latent code y(*) € RS, We sam-
ple 2048 points from each assembled shape to create the
ground truth. The network architecture utilizes 5 layers
of tree-based graph convolution with feature dimensions
of {64,32,32, 16,3} and an upsampling of {1,2,4, 8, 32}.
The network is trained with a learning rate of 1e~* for 100
epochs. We conduct our experiments on the two largest cat-
egories of our dataset the chair and table. Our additional
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qualitative results are included in Figure 4] For more detail
on the network architecture please refer to [6].

D. Optimal Order for Assembly

In our main paper, we presented various ways to order
part-components and justified that the top to bottom order
of a shape is the optimal one. In this section, we explain
each of these orders in more detail. We use A to represent
the inter-part adjacency matrix and B to represent a group
of similar parts.

L]

Part-wise connectivity order. In this ordering we
maintain a queue to decide the order in which to pro-
cess parts. We start at a random part P; and add to
the queue all parts P; directly connected to it, i.e,
A(i,j) = 1. If there are multiple neighbours for a
given part, we consider them in the order they appear
in the adjacency matrix. We iteratively carry out this
process until the all parts are considered.

Group-wise connectivity order. In this setting, we
create a group adjacency matrix by combining similar
parts. Two groups 5, and B,, are connected if for any
P; € B,, and P; € B,,, A(i,j) = 1. Then, similar to
part-wise connectivity, we start from a random group
B, and iteratively processing the neighbouring groups.

Volume Ordering. We sort parts from minimum vol-
ume to maximum volume. We measure volume as the
axis-aligned bounding box volume of the component
point-cloud in its canonical PCA orientation. If a com-
ponent point-cloud belongs to a part-group, we assign
it minimum volume among the components belonging
that group.

Central-Part Connectivity. We define the central part
as the one with maximum neighbours. We then follow
a similar procedure as part-wise connectivity starting
at the central part.

Top-Bottom Order. We consider parts in the canoni-
cal top-bottom ordering of the PartNet [4]] dataset. This
order resembles the group-connectivity order, with
similar groups being placed together. However, the



starting group is the group occurring at the top of the
assembled object.

* Random Order: We randomly order the parts.

E. Structural Variants

In this section, we discuss the structural variations of our
framework.

¢ Bottom to Top Encoding. We use a unidirectional
GRU, which operates in the top to bottom ordering.

e Top to Bottom Encoding. We use a unidirectional
GRU, which operates in the bottom to top ordering.

* Initializing Hidden States. The hidden states at sub-
sequent time-step (t 4 1) are initialized with final hid-
den state of the current time-step ().

¢ Noise in Pose Decoder. In this variant, we evalu-
ate the performance of our algorithm with part-wise
randomness. We do this by adding noise to the pose
decoder (part-wise randomness) instead of the hidden
state (global randomness).

* Without Graph Learning. We remove the graph
learning module of our algorithm and only test the per-
formance of our progressive framework.

* Sequential before Graph. The sequential module is
incorporated first to obtain the updated features. The
updated features are processed along with the part-
message for pose-regression.

F. Additional Qualitative Results

In this section, we present additional qualitative results
of our algorithm on the table (Figure [T), chair (Figure 2)
and lamp (Figure [3) category. We also include additional
results of shape recovery in Figure ]
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Figure 1. Additional qualitative comparison on the PartNet Table dataset
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Ground truth



B-Global B-LSTM B-DGL Ours Ground truth

Figure 2. Additional qualitative comparison on the PartNet Chair dataset
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Figure 3. Additional qualitative comparison on the PartNet Lamp dataset
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Figure 4. Additional qualitative results on shape recovery from our hidden state
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