
Cross-modal Adversarial Reprogramming - Supplementary Material

1. Wall-clock inference time of
reprogramming function

In Table 1, we report the wall clock inference time for
the adversarial program and the benchmark text classifiers
studied in our work for a sequence of length 500. Both
the Bi-LSTM and CNN model use 256 hidden units and an
embedding size of 256. We use a single layer Bi-LSTM
network and 1-D CNN with convolution filters of size 3, 4
and 5 based on the architecture proposed in (Kim, 2014).
For the adversarial program the patch size is 16X16 and the
output image size is 384X384. We average the inference
time for 100 sequences for these evaluations. It can be
seen that the adversarial program is significantly faster than
both Bi-LSTM and 1D-CNN models for both CPU and
GPU implementations in PyTorch. The CPU used for these
evaluations is Intel Xeon CPU and the GPU is an Nvidia
Titan 1080i.

Model CPU GPU

Adversarial Program 7.9 ms 0.2 ms
Bi-LSTM 161.5 ms 13.9 ms
1D CNN 383.2 ms 2.2 ms

Table 1. Wall clock inference time (in miliseconds) for the adver-
sarial program and the benchmark text classifiers studied in our
work for a sequence of length 500.

2. Hyper-parameter details of benchmark
classifiers

For training the benchmark neural-text classifiers, we use the
Bi-LSTM and 1D-CNN model with a softmax classification
head. For both of these models, the token embedding layer is
randomly initialized and trained with the model parameters.
We use Adam optimizer and perform mini-batch gradient
descent using a batch size of 32 for both of these models
for a maximum 200k mini-batch iterations. For the 1D-
CNN models we use filters of size 3, 4 and 5 for the three
convolutional layers. Other hyper-parameter details of these
models are listed in Table 2.

Model Hidden Units Emb. Size # Layers LR

Bi-LSTM 256 256 1 1e-4
1D CNN 256 256 3 1e-4

Table 2. Hyper-parameter details for the neural sequence classifiers
used as benchmark classifiers in our work. LR: Learning Rate.
Emb. Size: Embedding Size.

3. Perturbation amount vs Accuracy in
Bounded attacks

Figure 1 shows the performance of cross-modal adversarial
reprogramming at different magnitudes of allowed perturba-
tion in the bounded attack setting, while attacking the ViT
model. We use the same base image xc as used in all of our
bounded attack experiments.

Figure 1. Accuracy vs L∞ norm of the perturbation while repro-
gramming the ViT model for three target tasks covering emotion,
topic and DNA sequence classification.

4. Assessing the importance of Victim Model
To assess the importance of the victim model for solving
the target task, we perform an experiment to understand the
extent to which the target task can be solved by using only
the adversarial reprogramming function with a linear classi-
fication head on top. To perform this experiment, we take
the mean of all token embeddings in a sequence and pass it
as input to a linear layer that predicts the class scores for the
target task. Not surprisingly, this classifier works well for



Cross-modal Adversarial Reprogramming - Supplementary Material

Dataset Patch Size Accuracy%

Yelp 16 89.86
IMDB 16 87.75

AG 16 91.39
DBPedia 32 97.01

Splice 48 50.41
H3 16 75.12

Table 3. Performance of a classifier that uses only an embedding
layer and a classification head on the datasets used in our study.

sentiment and topic classification tasks which can be solved
reliably using word-frequency based methods (as reported
in Table 2 of the main paper). However, compared to our
reprogramming methods (reported in Table 2 of the main
paper), the classifier significantly underperforms on the two
DNA sequence classification tasks that require understand-
ing the underlying semantics of the sequence. This suggests
that while the embedding layer of the adversarial program
can sufficiently capture word-frequency statistics and inde-
pendently solve tasks that require keyword detection, the
pre-trained victim model is essential for tasks that require
analysing the structure and semantics of the sequence.

References
Kim, Y. Convolutional neural networks for sentence classi-

fication. In EMNLP, 2014.


