
A. Appendix
We present criteria for loss functions and an overview

of metrics in Section A.1. We propose more details about
the architectures in Sec. A.2, and present more results in
Sec. A.3. Sec. A.4 describes a dataset-specific feature em-
bedding analysis.

A.1. Loss Functions

In the following, we state all loss functions that we used
for our methodology. We describe the cross-entropy loss for
the Multivariate Time Series Classification (MTSC) task.
Next, we present criteria for the trajectory regression task.
Finally, we propose distance-based, spatio-temporal and
distribution-based loss functions.

MTSC Task: Cross-entropy Loss. For the MTSC task,
the cross-entropy loss [25] is defined by

LCE(U ,V) = − 1

n

n∑
i=1

vi log v̂i, (2)

where the Multivariate Time Series (MTS) U =
{u1, . . . ,um} ∈ Rm×l is an ordered sequence of m ∈ N
streams with ui = (ui,1, . . . , ui,l), i ∈ {1, . . . ,m}. m is
the length of the time series and l is the number of dimen-
sions. Each MTS is associated with a class label v ∈ Ω
from a pre-defined label set Ω. The training set is a sub-
set of the array U = {U1, . . . ,Un} ∈ Rn×m×l, where n
is the number of time series, and the corresponding labels
V = {v1, . . . , vn} ∈ Ωn [60]. The MTSC task is to predict
an unknown class label V̂ for a given MTS.

Trajectory Regression Task: Criteria. For the trajectory
regression task it is given a ground truth time series Y =
{y1, . . . ,ym} ∈ Rm×d. The goal is to predict a time series
X = {x1, . . . ,xn} ∈ Rn×d, such that X is closely aligned
to Y . In the following, we consider ri = yi − xi be the
residual between Xi and Yi. We consider a (differentiable)
substitution-cost function L : Rd × Rd → R+ to learn
the trajectory regression task. All metrics to be used in a
neural network have to obey the following criteria, where
X ,Y,Z ∈ R [34]:

L(X ,Y) ≥ 0 (non-negativity) (I)

L(X ,Y) = L(Y,X ) (symmetry) (II)

L(X ,Y) ≤ L(X ,Z) + L(Z,Y) (triangle inequ.) (III)

L(X ,Y) = 0 ⇔ X = Y (ident. of indiscernibles) (IVa)

It is difficult to make accurate predictions about the injec-
tivity as floating points operations and approximation er-
rors lead to a distance of zero for slightly different inputs.
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Figure 10: Sample weighting based on different distance-
based metrics.

Hence, Equ. (IVa) can be formulated as a pseudometric with
a relaxed identity of indiscernibles where X̃ ∈ R:

L(X̃ , X̃ ) = 0. (IVb)

Trajectory Regression Task: Distance-based Loss Func-
tions. We consider the Mean Squared Error

LMSE(X ,Y) =
1

n
∥Y − X∥22 =

1

n

n∑
i=i

r2i (3)

with L2-norm || · ||2 (see Fig. 10a). The derivative of the
LMSE loss is ∂

∂X LMSE(X ,Y) = − 2
n

∑n
i=i ri. The Mean

Absolute Error (MAE) is

LMAE(X ,Y) =
1

n
∥Y − X∥1 =

1

n

n∑
i=i

|ri| (4)

with theL1-norm ||·||1. Its derivative is ∂
∂X LMAE(X ,Y) =

1/n
∑n
i=i sign(ri). The Huber loss [30]

LH(X ,Y, δH) =

n∑
i:|ri|≤δH

1

2
(ri)

2 +

n∑
i:|ri|>δH

δH |ri| −
1

2
δ2H

(5)
is less sensitive to outliers, but depends on the hyperparam-
eter δH (see Fig. 10b). The derivative of the Huber loss is

∂

∂X
LH(X ,Y, δH) = −

n∑
i:|r|≤δH

ri −
n∑

i:|ri|>δH

δHsign(ri).

(6)



Similar, the Andrew’s Sine loss [8] is

LAS(X ,Y, δAS) =
n∑

i:|ri|≤1

4sin

(
ri

2δAS

)2

+

n∑
i:|ri|>1

1,

(7)
with hyperparameter δAS (see Fig. 10c) with the derivative

∂

∂X
LAS(X ,Y, δAS) =

n∑
i:|r|≤1

2

δAS
sin

(
ri
δAS

)
. (8)

Trajectory Regression Task: Spatio-temporal Loss
Functions. We define the Cosine Similarity by

LCS(X ,Y) = 1− x · y
∥x∥2∥y∥2

. (9)

The Cosine Similarity is a proper metric as it satisfies the re-
quirements LCS(X ,Y) ≥ 0 (I), LCS(X ,Y) = LCS(Y,X )
(II), and LCS(X ,X ) = 0 (IVb). Under certain conditions
the triangle equality (III) is not fulfilled [36]. This loss
function is a measure of similarity between two non-zero
vectors of an inner product space, but is not invariant to
shifts. The Pearson Correlation loss [47] LPC(X ,Y) =
LCS(X − X ,Y − Y), in contrast, is invariant to shifts.
This means, when X is transformed by a + bX and Y is
transformed by c + dY , where a, b, c and d are constants
(b, d > 0), the Pearson Correlation coefficient is invariant
in location and scale in the two variables. The Pearson Cor-
relation loss is defined by

LPC(X ,Y) = 1− sxy
sx · sy

= 1− (x− x) · (y − y)

∥x− x∥2∥y − y∥2
.

(10)
with the sample mean x = 1

n

∑n
i=1 xi. Analogously for y.

The covariance is sxy = 1
n (x−x)·(y−y), and the variance

of the features is s2x = 1
n

∑n
i=1(xi − x)2, analogously for

s2y . The partial derivative of the Pearson Correlation [54]
regarding x is

∂

∂x
LPC(X ,Y) =

(y − y)− sxy

sy
· (x− x)

sx · sy
. (11)

Further alternative distance-based metrics are, e.g., the
LogCosh, the Quantile [45], the Tukey’s Biweight [7],
the Hampel [8] and the Geman McClure metric [6] (see
Fig. 10d). For more information, see [37] for distance-
based metrics and [52] for spatio-temporal metrics.

Trajectory Regression Task: Distribution-based Loss
Functions. We use the distribution-based loss function,
i.e., the Wasserstein distance [23], defining a distance be-
tween two probability distributions on a given metric space
M and representing the cost δ of an optimal mass trans-
portation problem. Optimal transport can be used to com-
pare probability measures in metric spaces. There exists

some X0 in M such that the Wasserstein space of order p is
defined as

Pp(M) :=
{
µ ∈ P (M);

∫
M
δ(X ,X0)

pdX <∞
}
.

(12)
The pth Wasserstein distance between two probability mea-
sures µ and ν is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

δ(X ,Y)pdγ(X ,Y)

) 1
p

= inf
{[

E[d(X,Y )p]
] 1

p , law(X) = µ, law(Y ) = ν
}
,

(13)

with the collection of all probability measures Γ(µ, ν) on
M × M and p ∈ [1,∞). E[X] denotes the expected
value of a random variable X . We consider the classi-
cal case where the metric is the Euclidean metric in space
Rd ⊂ M, and hence, δ(X ,Y) = ||X − Y||. For all
subsets P ⊂ Rd, we have γ(P × Rd) = µ(P ) and
γ(P × Rd) = ν(P ). [48] The W1 distance is also called
the Kantorovich-Rubinstein distance. The Wasserstein dis-
tance satisfies the criteria (I) to (IVa): It holds the non-
negativity criteria Wp(µ, ν) ≥ 0 (I), and the symmetry cri-
teria Wp(µ, ν) = Wp(ν, µ) (II). Assume that Wp(ν, µ) =
0, then there exists a transference plan that is concentrated
on the diagonal, and it holds X = Y (IVa). Furthermore,
let µ1, µ2 and µ3 be probability measures on M × M,
and (T1, T2), respectively (Q2, Q3), be an optimal coupling
of (µ1, µ2), respectively of (µ2, µ3). There exist random
variables (T

′

1, T
′

2, T
′

3) with law(T
′

1, T
′

2) = law(T1, T2) and
law(T

′

2, T
′

3) = law(Q2, Q3), such that

Wp(µ1, µ3) ≤
(
E[d(T

′

1, T
′

3)
p]
) 1

p ≤

≤
(
E[d(T

′

1, T
′

2) + d(T
′

2, T
′

3)]
p
) 1

p ≤

≤
(
E[d(T

′

1, T
′

2)
p]
) 1

p +
(
E[d(T

′

2, T
′

3)
p])

) 1
p =

=Wp(µ1, µ2) +Wp(µ2, µ3),
(14)

and the triangle inequality holds (III). The duality formula
for the Kantorovich-Rubinstein distance is

W1(µ, ν) = sup
||ψ||Lip≤1

{∫
M
ψdµ

∫
M
ψdν

}
, (15)

for any µ, ν in the Wasserstein space P1(M). The Wasser-
stein distanceW1 of order 1 is the weakest of all, and hence,
is easier to bound. The Wasserstein distance has the ability
to capture weak convergence precisely and are rather strong
as they take care of large distances in M × M. [57] For
more information, see [43].

Summary. For the classification task, we use the LCE
loss function (2). For the regression task, we use a combina-
tion of the distance-based loss functions LMSE (3), LMAE



Network Total Trunk Regr. Class.
Only regression (A0) 117,052 96,852 20,200 -

Only classification (A1) 133,735 117,051 - 16,683
Class. for regr. (A2) 190,535 117,052 56,800 16,683

Latest split (A3) 133,735 96,852 20,200 16,683
Late split (A4) 153,935 96,852 20,200 36,883

Split after LSTM (A5) 194,935 86,352 30,700 77,883
Split after 2. Drop. (A6) 260,935 20,352 96,700 143,883
Split after 1. Drop. (A7) 277,639 3,648 113,404 160,587

Separate heads (A8) 281,287 0 117,052 164,235

Table 5: Parameters of the inertial-based models.

Network Total Trunk Regr. Class.
Only regression (A0) 1,342,638 1,322,438 20,200 -

Only classification (A1) 1,359,321 1,342,638 - 16,683
Class. for regr. (A2) 1,416,121 1,342,638 56,800 16,683

Latest split (A3) 1,359,321 1,355,804 20,200 16,683
Late split (A4) 1,379,521 1,322438 20,200 36,883

Split after 1. LSTM (A5) 1,619,921 1,082,038 260,600 277,283
LSTM in traj. head (A6) 1,459,521 1,082,038 260,600 116,883

LSTM in class. head (A7) 1,459,521 982,038 100,200 377,283
Split after 1. Drop. (A8) 2,701,959 76 1,342,600 1,359,283

Table 6: Parameters of the visual-based models.
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Figure 11: Grid search for an optimal number of LSTM
units and dropout for the visual-based CNN. Continuous
line: training loss. Dashed line: validation error.

(4), LH (5) and LAS (7), spatio-temporal loss functions
LCS (9) and LPC (10), and the distribution-based Wasser-
stein function LWASp

(13).

A.2. MTL Network Architectures

The general overview of the framework is given in Fig. 2
(Sec. 3). The input is for the IMU-based and the visual-
based OnHW dataset a MTS that differs regarding its input
size. For the IMU-based dataset, the input are the 13 chan-
nels of the accelerometers, gyroscope, magnetometer and
force sensor. The number of timesteps depends on the sam-
ple length. For the visual dataset, the input is the two dimen-
sional trajectory of the pen tip in camera coordinates. What
follows, is a CNN trunk, a classification head, and a regres-
sion head. The classification head is used for the MTSC task
by predicting a class label with the cross-entropy loss. The
regression head is used for the trajectory regression task that
predicts a MTS that represents the trajectory of the written
character. The loss function for this task is a combination
of distance-based, spatio-temporal, and distribtuion-based
metrics.

The number of trainable parameters in the neural net-
work trunk and in task-specific heads is important. We ad-
dress the problem in the following. We construct for each
dataset nine architectures with different split points. Archi-
tectures A0 and A1 are Single Task Learning (STL) CNNs
for the MTSC task and the trajectory prediction task. Archi-
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Figure 12: Evaluation for CNN architectures (A0-A8)
trained with the LMSE and LCE loss averaged over all
trainings.

tectures A2 to A8 combine both tasks by MTL. All IMU-
based architectures are given in Fig. 3. All visual-based
architectures are given in Fig. 4, where we search for the
optimal number of LSTM units and dropouts (see Fig. 11).
We choose a combination of 500 and 100 LSTM units, and
two dropout layers of 20%. An overview of all architectures
and its number of trainable parameters is given in Table 5
and in Table 6. The number of total parameters increases
for an early split point compared to late split points for both
networks. A regression head with one dense layer of 200
neurons has 20,200 parameters, while a classification head
with one dense layer of 83 neurons has 16,683 parameters.
Fig. 12 compares the training loss of all architectures for the
regression and classification tasks.

A.3. Evaluation Results

Hyperparameter Search for the Inertial-based Architec-
tures. For the alternative distance-based metrics, i.e., An-
drew’s Sine and Huber, we search for the hyperparameters
δH and δAS in {0.1, 0.2, . . . , 2.0, 2.5, . . . , 5.0} using a grid
search (Fig. 14a). For LAS we choose δAS = 0.3, and for
LH we choose δH = 4.0 for follow-up training. A large δH
tends to weight outliers more, while a small outlier rejection
has a higher standard deviation. We also search for the hy-
perparameter p ∈ {1, 2, 3, 4} of the distribution-based loss
LWASp

(Fig. 14a) and choose p = 1 for follow-up training.



(a) MSE. (b) Pearson Correlation. (c) Cosine Similarity.

(d) MSE + Pearson Correlation. (e) MSE and Cosine Similarity. (f) MSE + Wasserstein distance.

Figure 13: Trajectory prediction (blue) against the ground truth trajectory (red) of the characters ’A’, ’P’ and ’W’ based on
visual data (green) as MTS input preprocessed with U-Net [49].
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(a) Inertial dataset.
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(b) Visual dataset.
Figure 14: Grid search for δAS , δH and p averaged over all architectures. For LWASp

: left: trajectory error, right: classifica-
tion accuracy.

Hyperparameter Search for Visual-based Architectures.
As for the inertial-based architectures, we search for the
optimal hyperparameter of alternative distance-based met-
rics using a grid search (see Fig. 14b). For LAS we choose
δAS = 2.5, and for LH we choose δH = 2.0 for follow-up
training. We also search for the hyperparameter p in the dis-
tribution-based loss LWASp

and choose p = 4 for follow-up
training as it achieves the highest classification accuracy for
both the single LWAS4

loss and the combination of LMSE

and LWAS4 .

Camera-based reconstruction. In Fig. 13 we propose
additional trajectory reconstruction results based on the vi-
sual dataset. We come to similar conclusions as for the
inertial-based dataset. While the CNN trained with the
LMSE loss combined with the LPC loss (Fig. 13d) pre-
dicts a smoother trajectory than the single distance-based
loss functions (Fig. 13a), the LMSE + LWAS loss allows a
proper training (Fig. 13f).

Loss function IMU-based CNN Visual-based CNN
LMSE 0.3052± 0.0401 5.8961± 0.0533
LH 0.2971± 0.0401 5.8154± 0.1067
LAS 0.2993± 0.0399 5.8349± 0.1259
LPC 0.3027± 0.0394 4.4017± 0.0924
LCS 0.3001± 0.0395 4.4246± 0.0488

LWAS1
0.2994± 0.0395 4.4538± 0.0996

LMSE + LPC 0.3078± 0.0397 5.9077± 0.0610
LMSE + LCS 0.2984± 0.0387 5.8790± 0.1133

LMSE + LWAS1
0.3096± 0.0396 5.9607± 0.1253

Table 7: Overview of inference times in seconds (s) (mean
and standard deviation over all epochs) for architecture A0.

Training Times. For all loss combinations, we present
inference times (Table 7). While the visual-based CNN
takes 5.3971s for each epoch (on average), the IMU-based
CNN only takes 0.3022s. The differences between the
loss functions are small for the IMU-based architectures.
From the visual-based CNNs we can see that the spatio-
temporal and distribution-based loss functions (4.4267s)
are less computive-intense compared to the distance-based
loss functions (5.8488s). The marginally increased comput-
ing time for all loss combinations (5.9158s) is negligible.
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Figure 15: Visualization of the network embedding of the
last layer based on the t-SNE algorithm by [56].

A.4. Dataset Feature Embedding Evaluation

Fig. 15 illustrates the challenges of the inertial dataset us-
ing a 300 dimensional feature embedding. The figure repre-
sents the feature embedding based on the t-SNE algorithm
[56] (initial dimension of 301, perplexity of 30, an initial
momentum of 0.5, and a final momentum of 0.8) and in-
corporates all 83 classes, i.e., capital and small characters,
numbers and symbols. As it can be seen, the classes can be
well separated. The main difficulty is to differentiate cap-
ital and small letters, e.g., ’V’ and ’v’, ’K’ and ’k’, and
’X’ and ’x’, as these differ only in the size and not in the
number of strokes. Naturally, the embeddings of the letters
’O’, ’o’ and ’0’ are very close to each other. Furthermore,
the classes ’G’, ’6’, ’C’, ’c’ and ’(’ are challenging to
distinguish. These are one of the most frequent errors of the
networks for the MTSC task.


