MisConv: Convolutional Neural Networks for Missing Data
Supplementary Material

Marcin Przewiezlikowski

Marek émieja

Fukasz Struski Jacek Tabor

Faculty of Mathematics and Computer Science, Jagiellonian University
6 Lojasiewicza Street, 30-348 Krakoéw, Poland

marcin.przewiezlikowski@student.uj.edu.pl

{marek.smieja, lukasz.struski, jacek.tabor}@uj.edu.pl

1. Experimental details

In this section, we describe in detail the architectures and
hyperparameters of all models used in our experiments. We
use the following notation:

e conv, - a convolution-ReL.U-BatchNorm sequence
with n convolution filters

e lin, - a fully connected layer with n output features
followed by ReLU

e down / up - downsampling / upsampling convolution
(with stride of 2), respectively:

* drop, - dropout layer with probability p

For simplicity, we omit the reshaping operations which
take place between convolutions and fully connected layers.

1.1. Mixture of Factor Analyzers

In this section, we describe the implementation of Deep
Mixture of Factor Analyzers (DMFA) and outline the ar-
chitecture and hyperparameters used for each dataset. For
additional information, we refer the reader to [3, 2]].

MNIST Following [2]], we use DMFA which uses a small
convolutional feature extractor and single fully-connected
layers to make final predictions of each MFA parameter
(u, A, D). The extractor is a sequence of four convolution
layers with ReLU activations, with 16, 32, 64 and 32 filters,
respectively. The number of predicted factor analyzers is
l = 4. The DMFA is trained for 20 epochs, with a learning
rate of 4 * 10~° and a batch size of 48.

SVHN and CIFAR-10 Due to the increased dimentional-
ity of those datasets, we use a fully convolutional variant of

DMEFA, which consists of a fully convolutional feature ex-
tractor composed of Convolution-ReLU-BatchNorm blocks
[2]], followed by a downsampling / upsampling convolution
with a stride of 2. The network returns three heads that pre-
dict (p, A, D). Thus the extractor consists of the following
layers:

[convza] X 2, down, [convgy] X 2, down,

[conviag] X 4, up, [convegs] X 2, up, [convss] X 2

and parameter predictor heads consist of two convolu-
tional layers with 16 filters with a ReLU nonlinearity and a
BatchNorm layer between them.

The number of predicted factor analyzers is [= 4. We
train the DMFA for 100 epochs, with a batch size of 64
and a learning rate of 4 x 1075 for the first 10 epochs and
1 % 10~° afterwards. Similarly to [2] we note that a fully-
convolutional DMFA trained by minimizing only the NLL
loss finds it difficult to find a good mean vector y of the
returned density. We mitigate this by supplying the NLL
loss with MSE for the first 10 epochs of training.

CelebA For this dataset we use the same setup as in the
case of SVHN / CIFAR-10 images, with two differences: a
shorter training time - 50 epochs in total, as well as the size
of the feature extractor, which is approximately two times
bigger:

[convza] X 4, down, [conves] X 3, down,

[conviag] X 8, up, [convegs] x 4, up, [convsa] X 4

Training of DMFA on incomplete data In general, the
DMFA model is trained by hiding a portion z,, of a sam-
ple « from the model and minimizing the Negative Log-
Likelihood of imputation of x,, produced by the model.

Since we work with incomplete images, we cannot evalu-
ate the NLL on z,,,, because we do not have access to com-
plete ground-truth data. Thus we simulate incompleteness
of the data by hiding the other part z,, of each data sample x.
Although the model produces imputations for both z,, and
Zm, only the NLL of imputation of x,, \ x,, is minimized,
because this is an artificially created missing region.

1.2. Image classifier

For image classification we use a model composed
of similar Convolution-ReLU-BatchNorm sequences and
downsampling convolutions as in the fully convolutional
DMEFA, followed by two fully connected layers with a
ReLU nonlinearity between them.

MNIST and SVHN We use an architecture of:
[convsa, down, [convgs] X 2,lingg,lingg] and train
the model with a batch size of 24 and a learning rate of
103 for 10 epochs in case of MNIST dataset and 25
epochs in case of SVHN dataset.

CIFAR-10 We use an architecture of: [convsa, dropg 3] x
2, down, [convey, dropg.s] X 3,linyas, dropg s, linig] and
train the model with a batch size of 64 and a learning rate
of 10~ for 35 epochs.

1.3. Wasserstein Autoencoder (WAE)

In accordance with [4], encoder and decoder sections
of the WAE are fully convolutional, with a fully con-
nected layer at the end of the encoder and the beginning
of the encoder for transformation into and from the latent
space, whereas the discriminator part of the network con-
sists solely of fully connected layers with ReLU between
them and a sigmoid layer at the end.

MNIST Architecture:
¢ encoder: convss, convag, down, convgg, down, linsg
* decoder: linggag, up, convsgg, up, [convag] X 2, convy
o discriminator: [lings] X 4, ling

We train the WAE for 20 epochs with a batch size of 128
and learning rate of 4 % 10~—* for encoder and decoder, and
4 % 10~ for the discriminator.

SVHN Architecture:

* encoder: convss, [convgg] X 2, down,
[conviga] X 2, down, lingg

o decoder: linjaass, up, [conviga] X 2, up,
[convgg] X 3, convs

o discriminator: [lings] X 4,ling

We train the WAE for 50 epochs with a batch size of 64
and a learning rate of 4 x 10~* for encoder and decoder, and
4 % 10~ for the discriminator.

CelebA Architecture:

* encoder: convsa, [convgs] X 4,
[conviag] X 4, [convasg] X 4, [conv512] x 4, lingy

¢ decoder: lingigz, [convsia] X 4,
[convase] X 4, [convyag] X 4, [convey] X 5, convs

e discriminator: [linsia] X 4,ling

We train the WAE for 50 epochs with a batch size of 16
and a learning rate of 10~ for encoder and decoder, and
2.5 % 1076 for the discriminator.

1.4. Implementation details

The models and experiments have been implemented us-
ing the PyTorch framework [1] and run on GeForce GTX
1080 and RTX 2080 NVIDIA GPUs. Every experiment de-
scribed in this work is runnable on a single GPU.

The code implementing our technique is added to the
supplemental material and will be made publicly available
when the review period ends. The instructions on how to
run the code are written in the README file included with
the code.

In addition to our code, in this work we have used the
following open-source implementations of baseline imputa-
tions: Partial Convolution SMF ACFIO and KN

2. Other missing data tasks

Throughout the experiments, we used square missing re-
gions which encompass 1/4 of their area. To benchmark
the performance of MisConv on more diverse and difficult
tasks, we also consider images where half of the image area
was occluded with a trapezoid shape (trapezoid), as well
as images with 3/4 of pixels randomly removed (noise) —
see Figure |} Although the missing regions have different
shape, we consequently trained the DMFA by simulating
additional missing parts with square shape.

As shown in Table [T} MisConv achieves the best accu-
racy on all variants of missing data. The above results show
promise that MisConv can be leveraged to handle various
kinds of missing data problems, even when the percentage
of missing data is large.

Ihttps://github.com/NVIDIA/partialconvl available un-
der the BSD3 License

2https://github.com/eitanrich/torch-mfa

3https://github.com/lupalab/ACFlow

4https://scikit-learn.org/stable/modules/
generated/sklearn.impute.KNNImputer.html, https:
//github.com/rapidsai/cuml, available under the Apache 2.0
License

https://github.com/NVIDIA/partialconv
https://github.com/eitanrich/torch-mfa
https://github.com/lupalab/ACFlow
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://github.com/rapidsai/cuml
https://github.com/rapidsai/cuml

Ground-truth

O

Square

HEE
PBEB

Figure 1: Examples of MNIST images with missing data
simulated with square, trapezoid and noise techniques.

Trapezoid

Table 1: Classification accuracy when testing on various
kinds of incomplete MNIST datasets.

square trapezoid noise

Zero 0.91 0.891 0.946
mask 0.926 0.905 0.703
k-NN 0.874 0.854 0.912
PC 0.920 0.674 0.804
ACFlow 0.908 0.799 0.788
MisConv 0.931 0.918 0.966
GT 0.992 0.992 0.992

3. Computational overhead introduced by us-
ing MisConv

When computing the expected activation of the convo-
lution based on the MFA representation of the missing data
(1, A, d), M must also be applied to x, 1, d, as well as each
of the [vectors ay, ..., aj of which A is composed. In conse-
quence, there the total of 3 4- [vectors are processed by M,
which introduces a computational overhead compared with
classical convolutions. Since in practice [is usually small,
the effective increase in processing time is insignificant.

We demonstrate this by measuring the time it takes to
perform a forward pass of missing data through a classi-
cal convolutional layer and through MisConv. As in all the
above experiments, we select [= 4, which should lead
to approximately quadrupled time of a forward pass. We
check the time of a forward pass for images of sizes 28 x 28
(as in the MNIST dataset), 32 x 32 (as in the SVHN and
CIFAR-10 datasets) and 64 x 64 (as in the CelebA dataset),
with batch sizes of 16, 32 and 64. For each such setting, we
make 5000 measurements of the time of a forward pass of a
batch and report the results in Table 2] and Figure 2] It can
be seen that in all cases, the overhead introduced by Mis-
Conv indeed increases the processing time approximately
by a factor of 4. However, the order of magnitude of this
increase is milliseconds. It should also be stressed that this
overhead affects only the initial convolutional layer in the
entire target neural network, which often consists of tens
or even hundreds of layers. MisConv is therefore very ef-
ficient in practice, because it introduces a small computa-
tional overhead only in the initial layer of the entire neural

0.0020

00015

0.0010

Forward pass time [s]

0.0005

0.0000

0.0020

0.0015

0.0010

Batch size

Forward pass time [s]

0.0005

0.0000

0.0020

0.0015

0.0010

6
Forward pass time [s]

]

0.0005

0.0000

Classic convolution

MisComy

Layer kind

— ——
|

-
l

-

Classic convolution

Image shape

32

MisComy

Layer kind

Layer kind
M Classic convolution
MisCanv

MisComy

Layer kind

Figure 2: Time of a forward-pass through a classical con-
volutional layer and MisConv layer, measured for different
image sizes in a form of boxplots.

network.
Layer type

Datasets I M B Classic convolution MisConv
16 0.00016 % 0.00006 0.00092 + 0.00030
MNIST 28 14 32 0.00017 +0.00006 0.00097 + 0.00041
64 0.00020 + 0.00008 0.00138 + 0.00061
SVHN. 16 0.00022 £ 0.00012 0.00109 £ 0.00039
CIFAR-10 32 16 32 0.00037 +0.00020 0.00111 £ 0.00046
64 0.00034 +0.00016 0.00121 £ 0.00047
16 0.00034 % 0.00017 0.00091 + 0.00025
CelebA 64 32 32 0.00031+0.00012 0.00115 +0.00037
64 0.00029 +0.00008 0.00109 £ 0.00029

Table 2: Time

References

of a forward-pass through a classical con-
volutional layer and MisConv layer, measured for different
image sizes (denoted in the I column) with their respective
sizes of missing data squares (denoted in the M column)
and different batch sizes (denoted in the B column).

[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala.
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information

Pytorch: An im-

(2]

(3]

(4]

Processing Systems 32, pages 8024—8035. Curran Associates,
Inc., 2019.

Marcin Przewiezlikowski, Marek Smiej a, and Lukasz Struski.
Estimating conditional density of missing values using deep
gaussian mixture model. In Haiqin Yang, Kitsuchart Pa-
supa, Andrew Chi-Sing Leung, James T. Kwok, Jonathan H.
Chan, and Irwin King, editors, Neural Information Process-
ing, pages 220-231, Cham, 2020. Springer International Pub-
lishing.

Marcin Przewiezlikowski, Marek Smiej a, and Fukasz Struski.
Estimating conditional density of missing values using deep
gaussian mixture model. In ICML Workshop on The Art of
Learning with Missing Values (Artemiss), page 7, 2020.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Scholkopf.
Wasserstein auto-encoders. arXiv:1711.01558, 2017.

