
Self-Supervised Pretraining Improves Self-Supervised Pretraining
Supplementary Material

Colorado J Reed∗1 Xiangyu Yue∗1 Ani Nrusimha1 Sayna Ebrahimi1

Vivek Vijaykumar3 Richard Mao1 Bo Li1 Shanghang Zhang1 Devin Guillory1

Sean Metzger1,2 Kurt Keutzer1

1UC Berkeley, 2UCSF, 3Georgia Tech
∗equal contribution, correspondence to cjrd@berkeley.edu

Trevor Darrell1



Appendix

A. Implementation details

Table 1 lists the parameters used in the various training stages of the HPT pipeline. When possible, we followed existing
settings from [2]. For the finetuning parameter sweeps, we followed a similar setting as the “lightweight sweep” setting
from [21]. We performed pretraining with the train and val splits. For evaluation, we used only the train split for training
the evaluation task and then use the val split evaluation performance to select the top hyperparameter, training schedule, and
evaluation point during the training. We then reported the performance on the test split evaluated with the best settings found
with the val split.

For the linear analysis and finetuning experiments, we used RandomResizedCrop to 224 pixels and
RandomHorizontalFlip augmentations (for more on these augmentations, see [2]) during training. During evalua-
tion, we resized the long edge of the image to 256 pixels and used a center crop on the image. All images were normalized by
their individual dataset’s channel-wise mean and variance. For classification tasks, we used top-1 accuracy and for multi-label
classification tasks we used the Area Under the ROC (AUROC) [1].

For the 1000-label semi-supervised finetuning experiments, we randomly selected 1000 examples from the training set
to use for end-to-end finetuneing of all layers, where each class occurred at least once, but the classes were not balanced.
Similar to [21], we used the original validation and test splits to improve evaluation consistency.

For all object detection experiments, we used the R50-C4 available in Detectron2 [17], where following [6], the backbone
ends at conv4 and the box prediction head consists of conv5 using global pooling followed by an additional batchnorm layer.
For PASCAL object detection experiments, we used the train 2007+2012 split for training and the val2012 split for
evaluation. We used 24K training steps with a batch size of 16 and all hyperparameters the same as [6]. For BDD, we used
the 70K BDD train split for training and 10K val split for evaluation. We used 90K training steps with a batch size of 8 on
4 GPUs. For CoCo object detection and segmentation, we used the 2017 splits, with the 1×(∼12) epochs training schedule
with a training batch size of 8 images over 180K iterations on 4 GPUs half of the default learning rate (note: many results in
the literature (e.g. [6]) use a batch size of 16 images over 90K iterations on 8 GPUs with the full default learning rate, which
leads to slightly improved results (+0.1-0.5 AP). For semantic segmentation, we used Mask-RCNN [7] with a C4 backbone
setting as in [6].

Table 1. This table provides the parameters that were used for pretraining, linear, and finetuning analyses carried out in this paper (unless
otherwise noted). Multiple values in curly braces indicate that all combinations of values were tested, i.e. in order to find an appropriate
evaluation setting. 10x decay at 1

3
and 2

3
corresponds to decaying the learning rate by a factor of 10 after 1

3
and 2

3
of training steps have

occurred, respectively.

Parameter MoCo-V2 Value Linear Value Finetune Value

batch size 256 512 256
num gpus 4 4 4
lr 0.03 {0.3, 3, 30} {0.001, 0.01}
schedule cosine 10x decay at 1

3 ,
2
3 10x decay at 1

3 ,
2
3

optimizer SGD SGD SGD
optimizer momentum 0.9 0.9 0.9
weight decay 1e-4 0.0 0.0
duration 800 epochs 5000 steps {2500 steps, 90 epochs}
moco-dim 128 - -
moco-k 65536 - -
moco-m 0.999 - -
moco-t 0.2 - -

B. Datasets

Table 2 lists the datasets used throughout our experiments. For all evaluations, unless otherwise noted, we used top-1
accuracy for the single classification datasets and used the Area Under the ROC (AUROC) [1] for multi-label classification
tasks.



Table 2. Dataset Descriptions. We use x/y/z to denote train/val/test split in each dataset.

Dataset Train/Validation/Test Size Labels Classification Type
BDD [20] 60K/10K/10K 6 classes singular

Chest-X-ray-kids[10] 4186/1046/624 4 classes singular
Chexpert [9] 178.7K/44.6K/234 5 classes multi-class

Coco-2014 [12] 82.7K/20.2K/20.2K 80 classes multi-class
Clipart 27.2K/6.8K/14.8K 345 classes singular

Infograph 29.6K/7.4K/16.1K 345 classes singular
Domain Net Painting 42.2K/10.5K/22.8K 345 classes singular

[14] Quickdraw 96.6K/24.1K/51.7K 345 classes singular
Real 98K/24.5K/52.7K 345 classes singular

Sketch 39.2K/9.8K/21.2K 345 classes singular
RESISC [3] 18.9K/6.3K/6.3K 45 classes singular
VIPER [15] 13.3K/2.8K/4.9K 5 classes singular

UC Merced [19] 1.2K/420/420 21 classes singular
Pascal VOC [4] 13.2K/3.3K/4.9K 20 classes multi-class

Flowers [13] 1K/1K/6.1K 103 classes singular
xView [11] 39K/2.8K/2.8K 36 classes multi-class

C. Additional Experiments and Ablations

C.1. HPT Learning Rate

We investigated the choice of the learning rate used during HPT and its effect on linear evaluation performance (see
Table 3). Specifically, we tested initial learning rates {0.1, 0.03, and 0.001}, on datasets: RESISC, BDD, and Chexpert. The
following table shows that the default learning rate of 0.03 for batch size 256 from [2] outperformed the other configurations.
Based on this experiment, we used the default 0.03 learning rate for all HPT pretraining runs.

Table 3. The following table shows the linear evaluation performance with HPT pretraining learning rates of {0.1, 0.03, and 0.001}. Based
on this experiment, we continues to use the default 0.03 learning rate from [2].

Learning Rate
Datasets 0.1 0.03 0.001

RESISC 92.5 93.7 91.6
BDD 81.9 83.2 82.4
Chexpert 79.5 85.8 83.9

C.2. HPT with Supervised Base Model

We explored using a supervised ImageNet base model from [8] instead of the self-supervised MoCo model from [2].
Similar to the expepriments shown in Figure ?? in the main paper, Figure 1 shows the same results using a supervised base
ImageNet model. We observe similar behavior as with the self-supervised base model: HPT with the supervised base model
tends to lead to improved results compared to directly transferring the base model or pretraining entirely on the target data.
Unlike the self-supervised base model, HPT with a supervised base model often shows improved performance after 5K
iterations, e.g. at 50K iterations (RESISC, BDD, DomainNet Sketch, DomainNet Quickdraw, xView, Chexpert, CoCo-
2014), indicating that the supervised base model needs longer training to obtain comparable linear evaluation results. Also
unlike the self-supervised base model, these results show clearly better Target model results for BDD and Chexpert, and a
larger gap with DomainNet Quickdraw. This indicates that the supervised pretraining is less beneficial as a base model
when the domain gap is large – an observation further supported by the experiments in [18].

In Figure 2, we show results similar to the finetuning experiment results displayed in Figure ?? in the main paper, we
investigate the finetuning performance on the same set of target datasets except using a supervised ImageNet base model [8].
Overall, HPT again leads to improved performance over finetuning on the Target pretrained models for all three datasets.



Different from the self-supervised base model used in Figure ??, all results for the DomainNet framework are considerably
worse, and incorporating training on the source dataset (DomainNet Clipart) does not demonstrate an improvement in this
case. Overall, however, HPT with the supervised base model leads to improved finetuning performance with and without the
source training step.
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Figure 1. Linear eval: For each of the 16 datasets, we use a supervised ImageNet Base model [8]. We train the HPT framework for 50-50k
iterations (HPT Base(sup)-Target). We compare it to a model trained from a random initialization (Target) trained from 5K-400K iterations.
For each, we train a linear layer on top of the final representation. With a supervised base model, HPT obtains as good or better results on
13/16 datasets without hyperparameter tuning.

Augmentation robustness: We studied the augmentation robustness of HPT when using a supervised base model (HPT-
sup). We followed the same experimental procedure described in Section 4.4. Figure 3 shows the results using HPT-sup,
while for comparison, Figure ?? shows the results with HPT. Both HPT-sup and HPT demonstrate their robustness to the set
of augmentations used while pretraining on RESISC. However, HPT-sup exhibits more variation to the augmentations used
during pretraining on BDD and Chexpert. The supervised model was trained with only cropping and flipping augmentations,
while the self-supervised pretraining took place with all augmentations in the shown policy. The robustness of the self-
supervised base model indicates that the selection of the augmentation policy for further pretraining with the target dataset
is resilient to changes in the set of augmentations used for pretraining the base model, and if these augmentations are not
present, then the HPT framework loses its augmentation policy robustness.

C.3. Basetrain Robustness

We explored how the linear analysis evaluation changed with varying the amount of self-supervised pretraining on the
base model, e.g. the initial ImageNet model. We tested base models trained for 20, 200, and 800 epochs, where the 200 and
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Figure 2. Finetuning performance on target datasets with supervised pretrainings. Here, we show results similar to the finetuning experi-
ment results displayed in Figure ??, we investigated the finetuning performance on the same set of target datasets except using a supervised
ImageNet base model [8] and supervised (S)ource pretraining for B+S+T. Overall, HPT again leads to improved performance over fine-
tuning on the Target pretrained models for all three datasets. Different from the self-supervised base model used in Figure ??, all results
for the Domain Net framework are considerably worse, and incorporating training on the source dataset (Domain Net Clipart) does not
demonstrate an improvement in this case. Overall, however, HPT with the supervised base model leads to improved finetuning performance
with and without the source training step.
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Figure 3. Supervised base model augmentation robustness. Here, we further studied the augmentation robustness of HPT when using a
supervised base model (HPT-sup). We followed the same experimental procedure described in Section 4.4. As discussed in the text, these
results show that HPT-sup exhibits more variation to the augmentations used during pretraining on BDD and Chexpert. As the supervised
model was only trained with cropping and flipping augmentations, this indicates that the robustness from the base augmentations used in
the self-supervised pretraining remain when performing further pretraining on the target dataset.

800 epoch models were downloaded from the research repository from [2]1, and the 20 epoch model was created using their
provided code and exact training settings. For each base model, we performed further pretraining on the target dataset for
5000 steps.

Figure 4 shows the results for the RESISC, BDD, Chexpert, Chest-X-ray-kids, and DomainNet Quickdraw datasets.
We note several characteristics of these plots: the 200 and 800 epoch datasets performed comparably across all datasets
except Chest-X-ray-kids which displayed a drop in performance at 200 epochs, indicating that the extra self-supervised
pretraining needed to obtain state-of-the-art linear ImageNet classification performance is typically not be necessary for
strong HPT performance. Surprisingly, BDD, Quickdraw, and Chexpert show similar or improved performance at 20
epochs of basetraining. This indicates that even a relatively small amount of self-supervised pretraining at the base level
improves transfer performance. Furthermore, as mentioned in §??, the Quickdraw dataset has a large domain gap with
ImageNet, and indeed, we observe that directly transferring ImageNet models with less base training leads to improved
results on Quickdraw, but HPT maintains consistent performance regardless of the amount of basetraining.

The computation needed for 20 epochs of basetraining + 5000 iterations of pretraining on the target dataset is approxi-
mately equal to 100,000 iterations of pretraining on only the target dataset. For all datasets except Chest-X-ray-kids, HPT
at 20 epochs of basetraining exceeded the best Target-only pretraining performance, which was ≥ 100k iterations for all
datasets. Indeed, for RESISC, the HPT results at 20 epochs are worse than 200 and 800 epochs, but they still exceed the best
Target-only pretraining results (the dashed, orange line).

1https://github.com/facebookresearch/moco

https://github.com/facebookresearch/moco
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Figure 4. These figures show performance of linear evaluation on models pretrained on ImageNet for various epochs (in blue) and with
addition HPT training (in red). The best baseline model pretrained only on target data for at least the equivalent of 20 ImageNet epochs
and 5K HPT steps is show as the orange dotted-line.
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Figure 5. These figures show the change in the linear evaluation results by adding the source pretraining for each of the target data amounts
for the given datasets. We observed that for all three datasets, adding the source pretraining had a larger benefit as the amount of target
data was reduced. In other words, these results show that the impact of pretraining on an intermediate source dataset decreases as the size
of the target dataset increases.

C.4. Source Pretraining

In this ablation, we investigated the impact of the source pretraining stage in the HPT framework as the amount of
target data changes. Intuitively, we expected that the source pretraining stage would have less impact as the amount of
target data increased. For this ablation, we used the three HPT frameworks studied in §??: ImageNet (base) then Chexpert
(source) then Chest-X-ray-kids (target), ImageNet (base) then DomainNet Clipart (source) then DomainNet Sketch
(target), and ImageNet (base) then RESISC (source) then UC-Merced (target). For each framework, we pretrained with
{1%,10%,25%,100%} of the target data on top of the base+source model and on top of only the source model, before
performing a linear evaluation with the target data.
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Figure 6. This figure shows the HPT linear evaluation performance on BDD, Chexpert, and RESISC using a ResNet-18. For these datasets,
we observe similar behavior as with ResNet-50 though the evaluation performance is lower for all datasets and HPT shows improved per-
formance at 50K iterations for all datasets. Generalizing from this experiment, we expect HPT to be broadly applicable across architectures,
and we will report additional, ongoing results in our online code repository.

Figure 5 shows the change in the linear evaluation results by adding the source pretraining for each of the target data
amounts. We observed that for all three datasets, adding the source pretraining had a larger benefit as the amount of target
data was reduced. In other words, these results show that the impact of pretraining on an intermediate source dataset decreases
as the size of the target dataset increases.

C.5. ResNet-18 Experiments

Similar to Figure ??, Figure 6 shows the same results using a ResNet-18 on BDD, Chexpert, and RESISC. For these
datasets, we observe similar behavior as with ResNet-50, though the evaluation performance is lower. Generalizing from this
experiment, we expect HPT to be broadly applicable across architectures, and we will report additional, community results
in our online code repository.

C.6. BYOL Experiments

All of the pretraining results in the main paper are based on MoCo, here we use BYOL [5] for pretraining and perform
linear evaluation on RESISC, BDD and Chexpert. As shown in Figure 7, we observe similar results as Figure ?? in the
main paper. Generalizing from this experiment, we expect HPT to be broadly applicable across different Self-supervised
pretraining methods, and we will report additional, community results in our online code repository.
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Figure 7. Linear eval with BYOL [5] pretraining on RESISC, BDD and Chexpert. For each dataset, we we train a generalist model for 200
epochs on ImageNet (Base). We then train the whole model from 50-50K iterations (HPT: Base (BYOL)-Target). We compare the HPT
model with a model trained from a random initialization on the target data (Target). We use a linear evaluation to evaluate the quality of
the learned representations.



C.7. Representational Similarity

We examine how the similarity of representations change during pretraining with the self-supervised base model HPT,
supervised base model HPT, and self-supervised training on only the target data.

C.7.1 Defining metrics

We explore different metrics for measuring the similarity of two different pretrained models. The first metric we explore is
the Intersection over Union (IoU) of misclassified images. The IoU is the ratio between the number of images misclassified
by both models and the number of images misclassified by at least one model.

Algorithm 1 IoU
Require: data, labels, modelA, modelB

1: predictionA = modelA(data)
2: predictionB = modelB(data)
3: commonErrors, totalErrors← 0
4: for all l, pA, pB ∈ zip(labels, predictionA, predictionB) do
5: if l == pA and l == pB then
6: commonErrors+=1
7: end if
8: if l == pA or l == pB then
9: totalErrors+=1

10: end if
11: end for

return: commonErrors
totalErrors

The activation similarity metric we used wass RV2 [16] which, instead of comparing predictions, aims to compare the
similarity between two different layers’ outputs computed on the same data. The pseudocode for our algorithm is shown in
Algorithm 2.

Algorithm 2 RV2
Require: activation A, activation B {Both activations are size n× p, where n is the number of data points, and p is the size

of the layer output}
A′ = AAT

B′ = BBT

A′′ = A′ − diag(A′)
B′′ = B′ − diag(B′)
return

tr(A′′B′′T )√
tr(A′′A′′T ) ∗ tr(B′′B′′T ))

Because many of our evaluations were performed by finetuning a linear layer over the outputs of the final convolutional
layer of a pretrained model, we evaluated activations for the final convolutional layer and the linear layer finetuned on top of
it.

For this analysis, we studied Resisc, UC Merced, Domain Net, Chexpert, Chest-X-ray-kids, and BDD datasets.

C.7.2 Effect of model initialization?

In this section, we present the results of two sets of experiments intended to analyze the representation of HPT models
initialized from different base models. Overall, we found that HPT models with different base models learn different repre-
sentations.

Random effects: In order to examine the effect of the random seed on model errors, we trained each combination of
(basetrain, pretrain steps) five times for the RESISC dataset.



Representations which share the same basetrain and number of pretrain steps result in more similar errors and have much
more similar representations than other combinations, see Figure 8. The IoU is typically between 0.5 and 0.6, meaning that
roughly half of the total error caused by mispredictions are unique between these runs. The similarity is generally much
higher, but is varies depending on the dataset.
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Figure 8. Supervised and semi-supervised models trained with random seeds. Left IoU, right final linear layer similarity. Top supervised,
bottom semi-supervised

Same basetrain: Out of three different basetrain configurations (random-initialized, supervised basetrain, and self-
supervised basetrain), different runs starting from the same basetrain are typically more similar to each other by both metrics
than those with different basetrains. This holds true across models trained for different number of iterations with different
random seeds, and further adds to the notion that models learn different representations based on their starting point. How-
ever, after overfitting, models are less likely to follow this trend and become dissimilar to ones with the same basetrain.
We believe this is most likely due to models learning representations that mainly distinguish input data and thus all become
dissimilar to the best performing model.

We determined how similar models were using our two metrics of layer similarity and IoU errors of models with different
basetrains and number of pretrain steps compared to the best performing model. All models used the same pretrain dataset
and target dataset for evaluation. We focused on similarity to the highest performing model (in terms of both basetrain and
training iterations) to see if different basetrains converged to the same representation.

Linear classification layers from the same basetrain are consistently more similar than those with different basetrains. This
trend becomes less consistent after around 50,000 iterations of training, which is also when the self-supervised models we
examined start overfitting. In Figure 9 we plot the similarity of linear layers for each model relative to the best performing
models on four sample datasets.

This same observation held when comparing the similarity of the final convolutional layers instead of the linear classifi-
cation layers as shown in Figure 10. Overall, the convolutional layers trained from the same basetrain were more similar to
each other than other basetrains. There were just a few points of comparison that deviated from the trend in a little under half
of the datasets we tested.

The IoU error comparisons in Figure 11 showed a similar trend to the linear layers, with models with the same basetrain
being more similar on almost all random seeds and datasets until 50,000 iterations.

Finally, we performed a significance test to demonstrate the significant difference between representations learned from
different basetrain models. We trained five pairs of models with identical hyperparameters, but with different basetrains (su-
pervised vs self-supervised) and a different random seed. We also trained five pairs of models with identical hyperparameters,
but with the same basetrain (self-supervised) and a different random seed. All models used ImageNet for the basetrain and
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Figure 9. Linear Classification Layer comparison. For all the following graphs, SPT refers to Supervised Pretrain with ImageNet, and SSPT
refers to Self-Supervised Pretrain with MoCo. The best model is the model that attains 1.0 similarity, and every other model is compared
to that point. Up until the target model’s pretrain steps (before overfitting), we can see that the similarity between the linear classification
layers of every model with a different basetrain is much less than the models with the same basetrains.
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Figure 10. Final Convolutional Layer comparison. We can see that the models with basetrains similar to the best model consistently have
higher similarity scores.

RESISC for the pretrain. We calculated the linear layer similarity and IoU for each pair of models, and performed a Welsh’s
t-test on the results. We found that the similarities and IoUs were significantly different. The different basetrains had a mean
similarity of 0.78 while the identical basetrains had a mean similarity of 0.98 (p = 2× 10−4). The different basetrains had a
mean IoU of 0.40 while the identical basetrains had a mean IoU of 0.61 (p = 2× 10−6).
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Figure 11. IoU comparison. IoU scores are consistently larger for models with the same basetrain as the best model compared to those of
different basetrains, indicating that more similar errors are made by models with a similar initialization.
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