
Adversarial Branch Architecture Search for Unsupervised Domain
Adaptation

Supplementary

Luca Robbiano

Politecnico di Torino

Turin, Italy

luca.robbiano@polito.it

Muhammad Rameez Ur Rahman

Sapienza University of Rome

Rome, Italy

rahman@di.uniroma1.it

Fabio Galasso

Sapienza University of Rome

Rome, Italy

galasso@di.uniroma1.it

Barbara Caputo

Politecnico di Torino, CINI Consortium

Turin, Italy

barbara.caputo@polito.it

Fabio Maria Carlucci

Huawei Noah’s Ark Lab

London, United Kingdom

fabiom.carlucci@gmail.com

We provide additional analysis, results and implementa-
tion details, to further support the claims of the paper
and illustrate specific insights. In detail, we present
here:

• A more in-depth description of how the Ensemble
Model Selection (EMS) module is trained, as well
as further implementation details, plots and experi-
mental results regarding it and the different metric
it builds on for target accuracy prediction [sec. 1].

• An evaluation of the impact of the search space
parameters on the final performance of the UDA
method [sec. 2].

• A description of our ResNet50 and ResNet50 +
EMS baselines. [sec. 3]

• The full PACS results [sec. 4].

1. Ensemble Model Selection (EMS)

EMS is a crucial component of the ABAS pipeline: in
the UDA setting the target labels are not available,
and NAS cannot be applied to UDA without a way to
assess the quality of the proposed solutions. To be more
explicit, EMS uses the metrics discussed in section 3.3
to provide feedback on how good a sample is.

1.1. Training EMS

In this work we build an ensemble of weak predictors by
training a linear regressor on top of label-free metrics
which weakly correlate with the target accuracy. To do
so, we randomly sampled 200 configurations on each
dataset and trained them while collecting 100 snapshots

for each run, thus ending with a dataset of 20, 000 points.
At each snapshot we collected the 6 metrics described in
sec. 3.3 thus building a dataset of size 2000×6 on which
to train our regressor; note that the pseudo-label metric
is only used to assess the best snapshot in a single run,
not to compare across runs. All input features were
standardized to zero mean and unit standard deviation.
To model the regressor we used a linear least-squares
model as implemented in Scikit-Learn [5]. As target
labels (and thus the corresponding accuracy) is not
available in the context of UDA, we trained the regressor
on a different dataset and transferred it to the one of
interest. Specifically, on Office31 we used the regressor
trained on Office-Home and vice-versa. The regressor
for PACS was trained on Office31.

1.2. Unsupervised performance estimators

Figures 1, 2 and Table 1 (in aggregated form) show
how well the predictors, presented in section 3.3 of the
main paper, perform. EMS achieves consistently better
correlation on average and future work could investigate
if more complex model ensembles could achieve even
better performance. Note that since the regressors
were only trained on Office31 and Office-Home, Table 2
and the corresponding figures are focused on those two
datasets.

1.3. Implementation of the Diversity metric

The original Diversity [8] is defined as:

H(q̂(T )) = −

K∑

k=1

q̂klog(q̂k) (1)



where K is the number of classes. As we use the Diver-
sity as a predictor for estimating performance across
settings with different values of K, we simply divide
the metric by K as to get an average over the classes:

H(q̂(T )) = −
1

K

K∑

k=1

q̂klog(q̂k) (2)

Average corr. with Target Acc.
Metric Office31 Office-Home PACS

Entropy 0.76 0.61 0.57
Diversity 0.76 0.77 0.76
Pseudo-Labels 0.71 0.61 0.68
Source Accuracy 0.42 0.20 0.48
Silhouette 0.70 0.72 0.74
Calinski-Harabasz 0.29 0.03 -0.13

EMS 0.87 0.81 0.80

Table 1: This table shows how the different metrics
introduced in section 3.3 of the main paper correlate
with the target accuracy. Note that all metrics, with
the exception of source accuracy are computed on the
target.

2. Impact of the auxiliary branch config-
uration on the final accuracy

As can be seen in Table 2, the design choices which
are part of our search space have a tremendous impact
on the final performance of an ALDA [1] training - in
other words, the architecture and the hyper-parameters
of the auxiliary branch can make or break the UDA
approach that builds on it.

3. Baseline implementation

For all our baselines, we use a ResNet-50 backbone pre-
trained on ImageNet. The DANN and ALDA baselines
use the same adversarial branch architecture (two 1024
fully connected layers), connected right after a 512-sized
bottleneck layer preceding the ResNet-50 output. The
initial learning rate is set to 0.001, and it is adjusted
during training following

µp =
µ0

(1 + α · p)β
, (3)

where α = 10, β = 0.75 and p grows from 0 to 1 during
training. The weight decay is 0.0005, and the network is
trained with SGD (momentum 0.9, batch size 36). Since
the bottleneck and adversarial branch are trained from
scratch, for those parts of the network we set the initial

learning rate to 0.01 and the weight decay to 0.001. For
each run (no EMS) we select the last two snapshots
(evaluated each 100 iterations) and average them. For
the EMS baselines we select the best snapshot of the run
according to the value predicted by the EMS regressor.
Each run was repeated 4 times and the final accuracies
were averaged.

4. PACS results

Table 3 did not fully fit in the main text and is here
reported in its entirety. ABAS manages to significantly
improve over both DANN and ALDA: surprisingly, on
Sketch to Photo, ABAS-DANN largely outperforms
ABAS-ALDA, highlighting how an older method can
perform better than a new one, when trained with the
optimal branch. Indeed, although in a specific setting
(P-S), our EMS drives BOHB to select a less than
optimal architecture for DANN, ABAS-DANN offers
a slightly superior performance overall. Future work
to improve EMS would be expected to further increase
our results with both methods.

5. Software and hardware

Our network training code is written in PyTorch and
based on the publicly available ALDA [1] repository,
likewise, we use HpBandSter, the official BOHB [2]
implementation. The BOHB algorithm is run for 24
iterations using 8 parallel workers, each running on a
Tesla V100 GPU. On average, it takes 6, 10 and 6.4
hours to run the full ABAS pipeline on PACS, Office-
Home and Office31 respectively, leading to a cost of 80
GPU hours on the largest setting.



Figure 1: Correlation between the metrics introduced in section 3.3 and the target accuracy, as computed on
Office31.

Figure 2: Correlation between the metrics introduced in section 3.3 and the target accuracy, as computed on
Office-Home.



Setting
%

Min Max
Mean

Range
Div. ± Std.

A-W 0.23 64.59 95.79 83.4± 09.8 31.19
A-D 0.28 72.49 91.57 84.4± 06.2 19.08
D-W 0.15 17.11 99.06 89.0± 21.7 81.95
D-A 0.28 46.59 70.15 59.3± 06.4 23.55
W-D 0.22 16.47 100.00 89.3± 24.2 83.53
W-A 0.17 34.97 74.55 63.8± 08.3 39.58
Ar-Cl 0.08 26.60 50.71 41.7± 06.4 24.11
Ar-Pr 0.14 59.12 65.14 63.2± 02.1 06.01
Ar-Rw 0.22 43.30 75.89 70.0± 06.3 32.59
Cl-Ar 0.14 36.55 57.87 51.6± 07.3 21.32
Cl-Pr 0.14 55.58 66.41 60.9± 03.9 10.84
Cl-Rw 0.15 46.12 70.25 63.2± 05.6 24.13
Pr-Ar 0.14 40.15 57.21 49.8± 04.9 17.06
Pr-Cl 0.11 26.27 49.52 39.7± 06.5 23.25
Pr-Rw 0.07 41.47 75.64 66.5± 10.7 34.16
Rw-Ar 0.07 59.81 67.86 64.7± 02.3 08.06
Rw-Cl 0.07 15.40 54.80 46.2± 07.6 39.40
Rw-Pr 0.14 70.30 81.36 77.1± 02.6 11.06

AVG 0.2 42.9 72.4 64.6± 7.9 29.49

Table 2: Over 400 different points were randomly sampled from our search space and the corresponding models
were then trained using ALDA [1] over either Office31 [6] (top 6 rows) or Office-Home [7] settings. Note how the
configuration of the auxiliary branch significantly affects the model performance. % Div. stands for the fraction of
runs which did not converge - Min is the minimum accuracy - Max is the maximum - Mean reports the mean ±

the standard deviation, and Range is the total range of accuracies, defined as Max−Min.

P-A C-A S-A A-P C-P S-P A-C S-C P-C A-S C-S P-S AVG
ResNet-50 [4] 62.3 71.2 30.8 96.6 89.7 38.0 57.0 53.5 27.6 43.0 59.1 30.7 55.0
ResNet-50 + EMS 62.0 72.0 25.6 97.7 90.9 38.8 57.5 53.2 23.0 41.3 58.7 28.2 54.1

DANN [3] 79.9 88.4 70.3 97.3 95.1 57.1 82.4 70.8 64.7 62.5 68.7 61.4 74.9
DANN + EMS 80.3 89.0 72.6 98.1 95.6 56.2 82.2 73.3 64.0 63.4 69.7 59.6 75.3
ABAS-DANN 91.7 90.7 68.2 98.3 96.2 82.8 87.2 71.2 73.7 68.7 76.0 47.2 82.9

ALDA [1] 89.3 91.9 69.9 98.3 97.3 63.4 85.1 75.2 74.3 79.2 70.6 60.7 79.6
ALDA + EMS 90.2 92.0 72.3 98.4 97.8 69.5 86.0 82.1 72.1 80.7 75.1 66.1 81.9
ABAS-ALDA 93.1 91.8 78.1 98.7 97.8 70.8 88.7 84.9 69.7 79.8 69.5 64.9 82.3

Table 3: Results of ABAS on PACS, using a ResNet-50 backbone, + EMS: experiments run with our model selection
strategy.



References

[1] Minghao Chen, Shuai Zhao, Haifeng Liu, and Deng
Cai. Adversarial-learned loss for domain adaptation. In
AAAI, pages 3521–3528, 2020.

[2] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb:
Robust and efficient hyperparameter optimization at
scale. In International Conference on Machine Learning,
pages 1437–1446. PMLR, 2018.

[3] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-
adversarial training of neural networks. The Journal of

Machine Learning Research, 17(1):2096–2030, 2016.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learn-

ing Research, 12:2825–2830, 2011.

[6] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-
rell. Adapting visual category models to new domains. In
European conference on computer vision, pages 213–226.
Springer, 2010.

[7] Hemanth Venkateswara, Jose Eusebio, Shayok
Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation.
In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 5018–5027, 2017.

[8] Xiaofu Wu, Quan Zhou, Zhen Yang, Chunming Zhao,
Longin Jan Latecki, et al. Entropy minimization vs.
diversity maximization for domain adaptation. arXiv

preprint arXiv:2002.01690, 2020.


