
APPENDIX: Leveraging Test-Time Consen-
sus Prediction for Robustness against Unseen
Noise

In this appendix, we provide details that could not be in-
cluded in the main paper owing to space constraints, includ-
ing: (i) results on all 4 kinds of noise on CIFAR10-C dataset
such as: Gaussian Noise, Impulse Noise, Shot Noise and
Speckle Noise using WRN 40-2 architecture with compar-
isons to natural/normal training, joint training [11] and test
time training [28]; (ii) similar results on MNIST-C dataset
using LeNet architecture respectively; (iii) effect of individ-
ual parts of our proposed model for CIFAR10-C, MNIST-C
and TinyImageNet-C datasets; (iv) results on MNIST and
TinyImageNet clean data for test time training method [28]
along with individual parts of our proposed method as well
as together; (v) more visualizations of effect of quantized la-
tent (VQ-VAE) on mitigating noise for sample images from
MNIST-C and TinyImageNet-C datasets; (vi) qualitative re-
sults on TTT vs TTCP on improving generalization at in-
ference time for complete MNIST-C, TinyImagent-C and
ImageNet-C noisy test data; (vii) results on other corrup-
tions from [10], apart from the 4 kinds of noise mentioned
above, for CIFAR10-C dataset; as well as (viii) comparative
study of TTCP with the backbone network trained with or
without augmentation followed by AugMix [12].

A. Architecture Details
We used a VQ architecture similar to what was used

for CIFAR10 dataset (Section 4 in main paper) for our ex-
periments with MNIST and TinyImageNet datasets, shown
here. The encoder network consists of 2 convolutional lay-
ers followed by 2 residual blocks each of which contains 2
convolutional layers. The decoder follows the same archi-
tecture in mirrored fashion. The dimension of the embed-
ding vectors are taken to be 256 and 512 for MNIST and
TinyImageNet datasets respectively. We used group norm
[35] in between convolutional layers in both encoder and
decoder modules to handle single sample reconstruction re-
quired for TTCP strategy at inference time.

As explained in Sec 3 of the main paper, a teacher net-
work is introduced to extend the TTCP method to TTCP++.
As mentioned in Sec 4, we used ResNet-26 as the student
(backbone) network for CIFAR10-C (following [28] and
[1]), and WRN 28-10 as the teacher network. Going by
popular architectures used on MNIST, LeNet and Resnet-18
[9] architectures were used as student and teacher networks
respectively for our experiments on the MNIST-C dataset.
For experiments on TinyImageNet-C, ResNet-26 and WRN
28-10 architectures were used as student and teacher net-
works. ResNet-18 and ResNet-152 networks were used as
student and teacher networks for the ImageNet-C dataset.

B. Additional Results
MNIST-C: Tables 14, 15, 16 and 17 report comparisons
of natural/normal training, test time training [28] and OUR
method (comprising all components) on MNIST-C data
with all 4 kinds of noise. The results corroborate our claims
and show improvement over baseline methods.
CIFAR10-C: In addition to the results on CIFAR10-C in
Sec 4 with ResNet-26 and WRN 28-10 as student and
teacher networks respectively, we also studied the perfor-
mance on CIFAR10C with WRN 40-2 as the student (back-
bone) architecture (since joint training (JT) [11] uses this
architecture). We present results on the 4 kinds of noise:
Gaussian, Impulse, Shot and Speckle noise on CIFAR10-C
using WRN 40-2 and WRN 28-10 architectures as student
and teacher networks respectively in Tables 20, 21, 22 and
23. The values reported for natural training and JT [11] are
obtained using batch-normalization [15] (as in their work),
whereas results for test time training and our method fol-
lowed group normalization [35]. We included results of test
time training (TTT) [28] on the WRN 40-2 architecture for
completeness of analysis (note that [28] reported their re-
sults on only ResNet-26 architecture).
Performance on clean data: In continuation to the results
presented in Table 10 in the main paper for CIFAR10, we
show results on MNIST and TinyImageNet clean data us-
ing different components of our method, as well as vanilla
test time training (TTT) [28] in Tables 24 and 25 respec-
tively. These results show that our method maintains per-
formance on clean data (in fact, improves performance in
certain cases) while providing strong performance on un-
seen noise.

C. More Ablation Studies
Effect of individual parts of our method for CIFAR10-
C, MNIST-C and TinyImageNet-C: In Table 13, we pre-
sented results for different components of our framework
as an average across the severity levels (due to space con-
straints). We herein present the results for each sever-
ity level in Tables 26, 27, 28 and 29. Similar results are
presented in Tables 30,31,32,33 and tables 34,35,36,37 for
MNIST-C and TinyImageNet-C datasets respectively. Note
that across these results, as the severity level increases, the
VQ and KD module add value, demonstrating the need for
the TTCP++ framework.
Performance against other corruptions: We show the ef-
fect of our methods, TTCP and TTCP++, over TTT against
other corruptions in [10] for CIFAR10-C and ImageNet-C
in Tables 38 and 39. Note that our methods consistently out-
perform other baselines on all these corruptions too. In par-
ticular, both our methods improve performance over base-
lines on weather-based corruptions consistently. For cor-
ruptions based on camera capture such as zoom and con-
trast, the VQ-VAE module is not ideal for retrieving the



Baseline OURS
Method Natural TTT [28] TTCP TTCP++
SL 1 90.91 96.72 97.08 97.18
SL 2 86.55 92.59 93.70 94.67
SL 3 76.05 86.72 88.81 93.92
SL 4 70.23 80.11 83.97 91.11
SL 5 64.65 75.26 79.21 89.26
Avg. 77.67 86.28 88.55 93.22

Table 14. Results on Gaussian noise

Baseline OURS
Method Natural TTT [28] TTCP TTCP++
SL 1 89.04 96.59 96.61 96.65
SL 2 86.21 91.10 92.54 95.09
SL 3 82.23 87.12 90.05 93.17
SL 4 76.01 82.17 86.72 91.46
SL 5 71.43 78.25 83.28 90.52
Avg. 80.98 87.04 89.84 93.38

Table 15. Results on Impulse noise
Baseline OURS

Method Natural TTT [28] TTCP TTCP++
SL 1 81.93 96.19 96.23 96.71
SL 2 80.43 94.72 95.24 95.81
SL 3 77.84 88.34 90.35 94.57
SL 4 74.82 81.28 84.70 93.98
SL 5 69.71 76.91 79.56 92.69
Avg. 76.94 87.48 89.21 94.75

Table 16. Results on Shot noise

Baseline OURS
Method Natural TTT [28] TTCP TTCP++
SL 1 87.24 96.34 96.71 96.79
SL 2 84.18 92.51 93.78 94.98
SL 3 81.87 87.22 89.09 93.80
SL 4 76.59 81.14 87.16 91.89
SL 5 70.02 75.73 81.59 91.38
Avg. 79.98 86.59 89.66 93.76

Table 17. Results on Speckle noise
Accuracy results of our methods, TTCP and TTCP++, as well as the baseline method, TTT, with Gaussian, Impulse, Shot and Speckle noise on MNIST-C
dataset using LeNet and ResNet-18 architectures as student (backbone) and teacher networks respectively. This results show significant improvement of

our method over previous method i.e. TTT. TTT = Test time training [28]

latent data manifold (our TTCP module outperforms base-
lines in these cases however). Exploring other options to
retrieve the true data manifold for such camera capture-
based corruptions would be an interesting direction of fu-
ture work.
TTCP vs TTT on MNIST-C, TinyImageNet-C and
ImageNet-C: In addition to the results on CIFAR10-C
(presented in the main paper in Sec 5), we show signif-
icant improvement using TTCP over TTT for MNIST-C,
TinyImageNet-C and ImageNet-C datasets in Table 18.

MNIST-C Tiny-ImageNet-C ImageNet-C
Method TTT

[28]
TTCP TTT

[28]
TTCP TTT

[28]
TTCP

Gauss 86.28 88.55 40.18 42.79 3.1 3.8
Impulse 87.04 89.84 42.12 44.49 3.5 4.1
Shot 87.48 89.21 43.60 45.79 4.5 5.2
Speckle 86.59 89.66 41.62 44.78 NA NA
Clean 99.57 99.78 72.11 72.65 69.0 69.7

Table 18. Comparative effect of TTT and TTCP on improving
generalization at inference time for complete noisy test data from
MNIST-C, TinyImageNet-C (accuracy results averaged across 5
severity levels) and ImageNet-C datasets (accuracy results shown
for only severity level 5) using LeNet, ResNet-26 and ResNet-18
architectures as backbone networks respectively.

Combining TTCP with AugMix [12]: Considering Aug-
Mix [12] performed the best among the augmentation meth-
ods (in our results in Sec 4), we studied the possibility
of combining our method with AugMix by using AugMix
during training, and TTCP at inference. Table 19 shows
these results on CIFAR10-C and indicates that our method
can give further boost in performance when combined with
augmentation methods. Exploring this combination further

may be another promising direction of future work to obtain
models robust to unseen noise.

Method TTCP AugMix [12] TTCP+AugMix
Gauss 73.84 81.00 83.29
Impulse 75.76 86.00 87.46
Shot 78.17 85.00 86.68
Speckle 77.68 78.00 80.74

Table 19. Comparative effect of AugMix [12] and TTCP over both
of them individually for complete noisy test data from CIFAR10-C
using WRN 40-2 architecture. (accuracy results averaged across 5
severity levels.)

Visualizing effect of quantized latents:: We explained
the importance of quantized latents in mitigating unseen
noise in input image with visualizations for CIFAR10-C in
Sec 3 in the main paper. Here we present more such vi-
sualizations for sample images from MNIST-C (Figure 5)
and TinyImageNet-C (Figure 6) to show the effect across
datasets. It is observed from the visualizations that quan-
tization helps in removing noise at different severity levels
(even with severity level 5), and thus reconstructing noise-
free images that can be passed on to the next stage of our
pipeline in TTCP++.



Baselines OURS
Method Natural JT [11] TTT [28] TTCP TTCP++
SL 1 NA NA 84.19 86.59 87.23
SL 2 NA NA 74.62 78.92 84.79
SL 3 NA NA 66.09 73.38 82.91
SL 4 NA NA 61.34 68.09 81.04
SL 5 NA NA 55.86 62.25 75.46
Avg 42.00 52.00 68.42 73.84 82.29

Table 20. Results with Gaussian noise (SL = Severity Level)

Baselines OURS
Method Natural JT [11] TTT [28] TTCP TTCP++
SL 1 NA NA 86.21 87.14 87.96
SL 2 NA NA 80.14 82.61 85.69
SL 3 NA NA 74.38 78.91 84.57
SL 4 NA NA 63.81 70.03 80.71
SL 5 NA NA 53.26 60.11 70.36
Avg 55.00 61.00 71.56 75.76 81.86

Table 21. Results with Impulse noise (SL = Severity Level)

Baselines OURS
Method Natural JT [11] TTT [28] TTCP TTCP++
SL 1 NA NA 87.35 88.12 89.97
SL 2 NA NA 82.53 84.53 86.58
SL 3 NA NA 71.82 77.68 83.04
SL 4 NA NA 68.14 74.19 78.31
SL 5 NA NA 61.74 66.37 70.19
Avg 53.00 63.00 74.32 78.17 81.62

Table 22. Results with Shot noise (SL = Severity Level)

Baselines OURS
Method Natural JT [11] TTT [28] TTCP TTCP++
SL 1 NA NA 86.92 87.44 88.47
SL 2 NA NA 81.35 84.26 86.78
SL 3 NA NA 70.95 76.81 83.86
SL 4 NA NA 66.57 73.38 81.96
SL 5 NA NA 59.36 66.51 76.03
Avg 59.00 67.00 73.03 77.68 83.42

Table 23. Results with Speckle noise (SL = Severity Level)
Accuracy results of our methods, TTCP and TTCP++, as well as the baseline methods with Gaussian, Impulse, Shot and Speckle noise on CIFAR10-C
dataset using WRN 40-2 and WRN 28-10 architectures as student (backbone) and teacher networks respectively. Only average scores are provided for

natural accuracy and JT as reported in [11]. These results show significant improvement of our method over previous methods. JT = Joint Training [11],
TTT = Test time training [28]

Method Nat. JT[11] TTT[28] SSDN[1] TTCP TTCP++
Clean 99.03 NA 99.57 NA 99.78 99.53

Table 24. Results on clean MNIST test data

Method Nat. JT[11] TTT[28] SSDN[1] TTCP TTCP++
Clean 70.02 NA 72.11 NA 72.65 71.73

Table 25. Results on clean TinyImageNet test data
Accuracy comparison on clean MNIST and TinyImageNet test data using LeNet and ResNet-26 architectures respectively. These results show that, apart
from improved robustness against unseen noise, our method doesn’t sacrifice on clean data accuracy too.

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 78.73 83.18 80.00 81.94 83.27
Sev. Level 2 68.71 78.44 77.89 79.12 81.51
Sev. Level 3 58.65 66.88 74.49 75.76 79.32
Sev. Level 4 54.17 61.81 67.52 68.01 77.76
Sev. Level 5 49.81 56.01 56.28 56.67 72.21
Avg. Score 62.01 69.26 71.26 72.30 78.91

Table 26. Results with Gaussian noise

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 83.01 84.71 80.98 81.14 84.79
Sev. Level 2 75.93 81.86 78.25 79.02 82.92
Sev. Level 3 69.67 74.29 76.01 76.86 81.06
Sev. Level 4 56.01 64.09 68.56 69.21 77.38
Sev. Level 5 44.97 54.17 57.69 57.93 67.14
Avg. Score 65.92 71.82 72.29 72.83 78.66

Table 27. Results with Impulse noise
Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 82.43 85.62 81.55 81.76 86.29
Sev. Level 2 77.41 82.04 79.69 79.91 83.71
Sev. Level 3 65.11 72.11 73.10 73.89 79.37
Sev. Level 4 61.02 67.38 71.92 72.45 75.16
Sev. Level 5 53.32 61.03 63.95 64.30 66.29
Avg. Score 67.86 73.64 74.02 74.46 78.16

Table 28. Results with Shot noise

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 83.06 83.67 79.74 80.57 84.97
Sev. Level 2 75.98 80.05 79.11 79.70 83.64
Sev. Level 3 64.76 70.02 74.32 74.98 80.07
Sev. Level 4 55.09 66.41 70.40 70.81 78.36
Sev. Level 5 50.82 59.74 64.47 64.54 72.61
Avg. Score 65.94 71.98 73.61 74.12 79.93

Table 29. Results with Speckle noise
Accuracy comparison of different parts of our method with different noises from CIFAR10-C dataset using ResNet-26 and WRN 28-10 architectures as

student(backbone) and teacher networks respectively. KD = Standard model training with knowledge distillation. VQ = Accuracy measured with a
standard model trained with reconstructed images from vector quantization step. TTCP = Standard model training with our proposed TTCP approach

applied during inference. TTCP++ = KD + VQ + TTCP.



Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 90.96 97.08 94.46 94.62 97.18
Sev. Level 2 87.21 93.70 93.61 93.98 94.67
Sev. Level 3 77.43 88.81 92.72 93.01 93.92
Sev. Level 4 70.47 83.97 89.35 89.79 91.11
Sev. Level 5 65.06 79.21 86.09 86.89 89.26
Avg. Score 78.22 88.55 91.24 91.65 93.22

Table 30. Results with Gaussian noise

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 89.38 96.61 95.83 96.03 96.65
Sev. Level 2 86.35 92.54 93.87 94.08 95.09
Sev. Level 3 82.87 90.05 91.91 92.17 93.17
Sev. Level 4 76.29 86.72 87.45 87.82 91.46
Sev. Level 5 71.92 83.28 85.24 85.56 90.52
Avg. Score 81.36 89.84 90.86 91.13 93.38

Table 31. Results with Impulse noise
Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 82.03 96.23 94.76 94.85 96.71
Sev. Level 2 80.98 95.24 94.04 94.21 95.81
Sev. Level 3 78.14 90.35 93.01 93.84 94.57
Sev. Level 4 75.41 84.70 92.02 93.07 93.98
Sev. Level 5 70.18 79.56 90.68 90.87 92.69
Avg. Score 77.34 89.21 92.90 93.36 94.75

Table 32. Results with Shot noise

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 87.68 96.71 94.12 94.37 96.79
Sev. Level 2 84.21 93.78 93.96 94.18 94.98
Sev. Level 3 82.03 89.09 91.89 92.06 93.80
Sev. Level 4 76.99 87.16 89.26 89.61 91.89
Sev. Level 5 70.86 81.59 86.15 86.52 91.38
Avg. Score 80.35 89.66 91.07 91.34 93.76

Table 33. Results with Speckle noise
Accuracy comparison of different parts of our method with different noises on MNIST-C dataset using LeNet and ResNet-18 architectures as

student(backbone) and teacher networks respectively. KD = Standard model training with knowledge distillation. VQ = Accuracy measured with a
standard model trained with reconstructed images from vector quantization step. TTCP = Standard model training with our proposed TTCP approach

applied during inference. TTCP++ = KD + VQ + TTCP.

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 56.17 58.76 56.73 56.97 60.74
Sev. Level 2 46.34 50.66 47.90 48.39 56.38
Sev. Level 3 35.28 43.92 45.61 46.04 49.71
Sev. Level 4 26.35 33.18 40.46 40.75 44.12
Sev. Level 5 21.53 27.47 35.93 36.29 41.23
Avg. Score 37.13 42.79 45.32 45.68 50.43

Table 34. Results with Gaussian noise

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 58.03 59.83 58.19 58.35 61.72
Sev. Level 2 48.12 51.97 48.62 48.91 57.27
Sev. Level 3 37.86 44.78 46.98 47.35 50.64
Sev. Level 4 28.41 36.57 40.14 40.78 42.35
Sev. Level 5 24.89 29.32 36.68 36.84 39.18
Avg. Score 39.46 44.49 46.04 46.45 50.23

Table 35. Results with Impulse noise
Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 58.92 61.18 59.48 59.67 62.98
Sev. Level 2 50.43 54.69 50.74 50.91 58.26
Sev. Level 3 39.76 45.88 48.15 48.23 50.41
Sev. Level 4 30.54 37.04 40.85 41.06 43.68
Sev. Level 5 25.68 30.16 37.52 37.95 39.53
Avg. Score 41.06 45.79 47.35 47.56 50.97

Table 36. Results with Shot noise

Method KD TTCP VQ VQ+KD TTCP++
Sev. Level 1 58.53 60.05 59.16 59.72 62.37
Sev. Level 2 48.76 52.61 49.27 49.73 57.84
Sev. Level 3 39.47 44.99 47.03 47.61 50.02
Sev. Level 4 28.57 36.57 39.92 40.36 43.17
Sev. Level 5 23.68 29.68 36.58 36.74 39.21
Avg. Score 39.80 44.78 46.39 46.83 50.52

Table 37. Results with Speckle noise
Accuracy comparison of different parts of our method with different noises on TinyImageNet-C dataset using ResNet-26 and WRN 28-10 architectures as

student(backbone) and teacher networks respectively. KD = Standard model training with knowledge distillation. VQ = Accuracy measured with a
standard model trained with reconstructed images from vector quantization step. TTCP = Standard model training with our proposed TTCP approach

applied during inference. TTCP++ = KD + VQ + TTCP.

Baselines OURS
Method Natural JT [11] TTT [28] TTCP TTCP++
Snow 79.62 80.24 81.04 82.34 84.67
Frost 76.32 77.46 78.78 79.83 81.49
Fog 85.76 85.84 86.60 87.71 88.09
Zoom 81.42 81.72 83.32 84.65 81.92
Contrast 86.14 85.78 86.38 87.43 86.19

Table 38. Results of CIFAR10-C. (avg. across 5 sev. levels.)

Baselines OURS
Method Natural JT [11] TTT [28] TTCP TTCP++
Snow 15.7 15.3 17.1 17.9 18.7
Frost 14.9 15.8 17.9 19.2 20.1
Fog 15.3 17.0 20.0 21.4 22.5
Zoom 16.2 16.0 18.5 19.4 16.7
Contrast 9.7 11.0 14.4 14.9 11.8

Table 39. Results of ImageNet-C.(only sev. level 5.)
Accuracy results of our methods, TTCP and TTCP++, as well as the baseline methods on different corruptions such as weather based (snow, frost, fog) and
camera capture based (zoom, contrast) corruptions of CIFAR10-C and ImageNet-C datasets using ResNet-26 and ResNet-18 architectures respectively.



Figure 5. Visualizing effect of quantized latent on mitigating noise for two sample test images from MNIST-C dataset (Recon = reconstruc-
tion of VQ module). Note that the VQ module can address the noise at all severity levels with no prior knowledge of the noise.

Figure 6. Visualizing effect of quantized latent on mitigating noise for two sample test images from TinyImageNet-C dataset (Recon =
reconstruction of VQ module). Note that the VQ module can address the noise at all severity levels with no prior knowledge of the noise.


