
D2Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos –
Supplementary Material
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Figure 1: Percentage of out-of-bounds sampling locations,
per layer. Measured during inference on DAVIS’16.

1. Modulation Map Visualization

In Fig. 2, we visualize a full volume of predicted mod-
ulation values for each of the convolutional layers in the
refinement modules when D2Conv3D is applied to [9]. It
is visible that every channel reacts to different parts of the
foreground or background. Kernel points that potentially
sample from neighbouring frames receive higher modula-
tion values on the object boundaries or on the background.
Kernel points that sample the current frame, however, have
low modulation values in the background and larger modu-
lation values on the object.

2. Out-of-bounds Sampling Behaviour

As mentioned in Sec. 3 of the main paper, we perform
a detailed comparison of the percentage of sampling lo-
cations that are sampled outside the input feature volume,
per convolutional layer, in Fig. 1. It can be observed that
D2Conv3D predicts fewer sampling locations beyond the
input features than DCNv1 or DCNv2 in most of the cases.

Model #Params (M) Time (s/frame)

AGNN [15] 82.3 2.96
CosNet [7] 81.2 0.45
STEm-Seg [1] 50.1 1.42
ADNet [21] 79.3 2.94
MatNet [23] 142.7 0.75∗

DFNet [22] 64.7 0.28
3DC-Seg [9] 74.2 0.16
RTNet [11] 277.2 0.29†

Revised Baseline 74.2 0.2
Ours 77.1 0.22
Ours (dense) 77.1 1.07

Table 1: Runtimes during inference on DAVIS’16. Mea-
sured on an Nvidia GTX-1080Ti. †Not including time for
CRF post-processing. ∗ runtime reported on an Nvidia
RTX-2080Ti.

3. Runtime
Although deformable convolutions are not as heavily op-

timized as regular convolutions, the impact on the runtime
is small because we use them only on low-resolution feature
maps. Detailed runtimes can be found in Tab. 1

4. Comparison with State-of-the-art

DAVIS 2019: Table. 2 reports the results of the state-of-
the-art methods on DAVIS’19 unsupervised validation set.
The methods that are grayed out do not use 3D convolu-
tions and hence D2Conv3D cannot be plugged-in to them
for a direct comparison. UnOVOST [24] performs the best
among all the methods with a J&F score of 67.0%, but it
uses multiple 2D networks along with heuristic-based post-
processing and hence D2Conv3D cannot be used here as
a drop-in replacement to further push its performance. In
fact, STEm-Seg [1] is the only method that uses 3D con-
volutions to incorporate temporal context, and as seen in
Table. 2, D2Conv3D improves its performance from 63.4 to
64.6 J&F .

YouTube-VIS: We provide an overview of current meth-
ods for video instance segmentation on YoutubeVIS[18] in



DAVIS 2019 Unsupervised

Method J&F Mean J Mean F Mean

KIS∗ [4] 59.9 - -
UnOVOST∗ [24] 67.0 67.0 68.4
RVOS [12] 41.2 36.8 45.7
AGNN [15] 61.1 58.9 63.2

STEm-Seg [1] 63.4 60.3 66.5
STEm-Seg +D2Conv3D 64.6 60.8 68.5

Table 2: Results on the validation set of DAVIS’19 unsu-
pervised VOS.

Method mAP AP50 AP75 AR1 AR10

FEELVOS[13] 26.9 42.0 29.7 29.9 33.4
IoUTracker+ [18] 23.6 39.2 25.5 26.2 30.9
OSMN [19] 27.5 45.1 29.1 28.6 33.1
DeppSORT [17] 26.1 42.9 26.1 27.8 31.3
MaskTrack R-CNN [18] 30.3 51.1 32.6 31.0 35.5
SeqTracker [18] 27.5 45.7 28.7 29.7 32.5
SipMask [3] 32.5 53.0 33.3 33.5 38.9
CSipMask [10] 35.1 55.6 38.1 35.8 41.7
CMaskTrack R-CNN [10] 32.1 52.8 34.9 33.2 37.9
CompFeat [5] 35.3 56.0 38.6 33.1 40.3
VisTR (Res50) [16] 36.2 59.8 36.9 37.2 42.4
VisTR (Res101) [16] 40.1 64.0 45.0 38.3 44.9
MaskProp [2] 46.6 – 51.2 44.0 52.6

STEm-Seg [1] 30.6 50.7 33.5 31.6 37.1
STEm-Seg + D2Conv3D 32.3 51.3 34.7 32.2 38.1

Table 3: Performance comparison on the validation set of
YoutubeVIS 2019 [18]. Baseline is STEm-Seg [1] with a
ResNet50 backbone.

Method mAP AP50 AP75 AR1 AR10

CSipMask [10] 14.3 29.9 12.5 9.6 19.3
CMaskTrack R-CNN [10] 15.4 33.9 13.1 9.3 20.0
CrossVIS [20] 18.1 35.5 16.9 – –

STEm-Seg [1] 14.3 31.5 12.4 10.2 20.7
STEm-Seg + D2Conv3D 15.2 33.8 13.7 10.6 22.2

Table 4: Performance comparison on the validation set of
OVIS [10].

Tab. 3. Again, methods in gray do not use 3D convolutions.
The best performing method, MaskProp [2], achieves an
impressive score of 46.6 mAP. It extends Mask R-CNN [6]
with a mask propagation branch branch; there are no 3D
convolutions which we can replace with D2Conv3D in or-
der to boost performance further. STEm-Seg [1] is the
only method relying on 3D convolutions. Replacing reg-
ular convolutions with D2Conv3D in the decoder increases
performance from 30.6 mAP to 32.3 mAP. Despite a weaker
ResNet50 backbone, STEm-Seg + D2Conv3D is still com-
petitive to many current architectures.

KITTI-MOTS: Recently, HOTA [8] has been proposed as
a metric for tracking and segmentation. We provide HOTA

scores for our models in Tab. 5, and compare our perfor-
mance with Track R-CNN [14]. Our STEm-Seg baseline
performs overall better than Track R-CNN; Track R-CNN
provides a better detection accuracy (DetA in Tab. 5), while
STEm-Seg achieves a better association accuracy. Both
methods perform comparable in terms of localization ac-
curacy.



Car Pedestrian
Method HOTA DetA AssA LocA HOTA DetA AssA LocA

Track R-CNN [14] 72.3 77.4 67.8 88.3 42.1 54.9 32.7 78.6

STEm-Seg [1] 73.1 68.6 78.2 88.7 47.9 48.8 47.2 79.6
STEm-Seg + DCNv1 73.3 70.4 76.7 88.8 45.5 46.6 44.8 78.5
STEm-Seg + DCNv2 72.7 70.0 75.9 88.7 47.7 47.8 48.1 78.9
STEm-Seg + D2Conv3D 74.1 70.5 78.2 89.4 50.1 50.3 50.3 80.0

Table 5: HOTA score on the validation set of KITTI MOTS. Baseline is STEm-Seg [1] with a ResNet50 backbone.
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Figure 2: Modulation values predicted during inference on the dance-twirl sequence in DAVIS’16. Recall that for a 3×3×3
convolution, the modulation map M ∈ RT×H×W×K has K = 27 channels for each pixel in the input feature map. Here we
visualize these 27 channels by splitting them into a row of 3 image blocks, with each block having size 3 × 3. Consider the
row of image blocks for T = t0 : here the image block under ”Previous” corresponds to the modulation values predicted for
those kernel weights which will be applied to the video features in the previous timestep (T = t0 − 1). Likewise, ”Curent”
and ”Next” show the modulation values for the kernel weights which will be applied to the video features from the current
(T = t0) and next (T = t0 + 1) timesteps, respectively. The modulation map M is shown here for a total of 4 time-steps
(t0, ..., t0 + 3); thus, there are four sets of image blocks along the vertical dimension.

References

[1] Ali Athar, Sabarinath Mahadevan, Aljoša Ošep, Laura Leal-
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