
A. Supplementary Materials

A.1. Unique Frequency Encoding

The simplest method of associating glints with their re-
spective light sources is using a unique frequency per light.
This is the method used in previous works on ALMs and
is illustrated in Algorithm 1. We propose integrating the
weight of each event transition w by a lowpass filter, in a
similar manner to lowpass image reconstruction [22]. Es-
sentially, each time a transition is registered, the previous
value in the filter is decayed proportionally to the time since
the last update, via the update formula

E(wn) = E(wn�1)k + P (dt|f) (3)

k = e�dt⇤f⇤⌧ (4)

where ⌧ is the time constant of the lowpass filter (cutoff
frequency = 1

⌧).

Frequency filter normalization In order to make our fre-
quency filters more interpretable than a ‘raw’ expectation
map as in [3], we can normalize the filter images using
the ideal maximum value of the filter. Concretely, suppos-
ing that the event filter was observing an ideal pulse with
frequency f , the update weight w for each pulse would
be the mean likelihood of the sampling distribution µf =
N (0; 0,�). Under this circumstance, the closed form defi-
nition for 3 is

E(n) = knE0 +
µf (kn+1 � 1)

k � 1
. (5)

Algorithm 1: Frequency filtering algorithm
(ec=event count, ts=timestamp, pol=polarity).

Input: Events E , f , �, �c, sp
Output: If

1 forall e = {x, y, t, p} 2 E do

2 if p == curr pol[x, y] then

3 curr ec[x, y] += 1;
4 else

5 next ts[x, y] = t;
6 next pol[x, y] = p;
7 next ec[x, y] += 1;
8 end

9 if next ec[x, y] > �c next pol[x, y] == sp then

10 dt=next ts[x, y]- curr ts[x, y];
11 If [x, y] = N (dt; 1

2f ,�
2
);

12 curr pol[x, y] = p;
13 curr ec[x, y] = next ec[x, y];
14 curr ts[x, y] = next ts[x, y];
15 next pol[x, y], next ec[x, y], next ts[x, y] = 0;
16 end

17 end

(a) Scene (b) Frequency Filter

Figure 12: In 12a four glint pairs flash at various fre-
quencies. 12b shows the frequency filter response for the
glints. A 2-mean GMM is applied to detect glint centers
(red points).

This equation has a limit

lim
n!1

E(n) =
µf

1� k
, (6)

which gives us the maximum value the filter can take. We
divide by this maximum value to scale expectation maps to
the range [0, 1].

Glint centroiding Because the frequency filter doesn’t
rely on the synchronization pulse, it needs an additional step
to distinguish the 2 glints within a glint pair (which operate
at the same frequency, as they compensate each other). We
use a 2-mean Gaussian Mixture Model (GMM) to find the
centers of each glint pair in the expectation maps with sub-
pixel accuracy (see Figure 12).

Operations per Event Note that the large majority of
events never passes the if statement on line 9 of Algorithm
1. Only when an event of the opposite polarity to the current
polarity is observed, is a transition registered and this condi-
tion triggered. For a single pulse of events, this should only
occur once and only for those pixels observing the beacon
stimulating the pulse. In our experiments, glints were al-
ways  120 pix in size. A typical pulse of events contained
around 3500 ev at an upper bound of 500 °/s ocular motion
(see Figure 9, where an event-rate of ⇡ 3.5Mev/s is mea-
sured with 1000 pulses/s). Most of these events only require
3 FLOPs as they do not pass the second if statement, which
is only passed ⇡ 120 times. The second if statement re-
quires 10 FLOPs, so on average ⇡ 3⇥3400+10⇥120

3500 = 3.3
FLOPs/ev

A.2. Binary Coded Glint Tracking Algorithm

A breakdown of the algorithm illustrated in 3.3 is pre-
sented in Algorithm 2.

10

Algorithm 2: Update algorithm for Binary Glint
tracker (gm0=glint-map 0 , gm1=glint-map 1).

Input: gm0, gm1, x, b, �p

1 if x == none then

2 patch = get patch (topleft=(0, 0),
size=gm0.shape);

3 else

4 patch = get patch (center=x, size=(�p,�p));
5 end

6 if b == none then

7 new x 0, w0 = find glint (gm0, patch);
8 new x 1, w1 = find glint (gm1, patch);
9 if w0 > w1 then

10 return new x 0;
11 else

12 return new x 1;
13 end

14 else

15 if b == 0 then

16 new x, w = find glint (gm0, patch);
17 return new x;
18 else

19 new x, w = find glint (gm1, patch);
20 return new x;
21 end

22 end

A.3. Sensor Noise

We claim that our proposed method is resistant to sensor
noise. To demonstrate this, we present a histogram of tran-
sition periods for a 60 s recording with the lens cap on (Fig-
ure 13). It is clear from this experiment that typical camera
noise operates almost entirely in the 0-250Hz range.

0 500 1000 1500 2000 2500

P
ro

po
rti

on
 T

ra
ns

iti
on

s

Frequency [Hz]

Figure 13: Dark blue bars show the histogram of the fre-
quencies implied by the transitions of lens-cap noise events.

0 500 1000 1500 2000 2500

P
ro

po
rt

io
n

of
 T

ra
ns

iti
on

s

Frequency [Hz]

Figure 14: Dark blue bars show the histogram of the fre-
quencies implied by the transitions of the event pulses of
a light flashing at 1700Hz for 10 s (mean µd = 1741Hz,
stdev �d = 129Hz). The sampling function (1) models this
as a normal distribution N (µs = 1700,�s = 80) (black
curve). Multiplying the data with the sampling function re-
duces the bandwidth consumed (light blue), as �s < �d.

A.4. Event Camera Bandwidth

As identified in Section 4.5, the bandwidth required to
robustly detect a beacon flashing at a fixed frequency is in
the low hundreds of Hz for modern event sensors. This lim-
its the number of beacons that can be robustly supported in
a one-frequency-per-beacon encoding scheme to just ⇡ 5.
Figure 15 shows that event to achieve this, the target event
sensors needs to be tuned for the task. The distribution
of frequencies implied by the transition periods recorded
observing a beacon flashing at a fixed frequency, shows
that beyond 1 kHz the standard parameterisation fails en-
tirely. Notice that even in our tuned camera, the peak of
the distribution stalls at around 1800Hz, implying that this
is the limit of our camera’s ability to accurately detect high
frequency pulses. Also noteworthy is the smaller peak at
the harmonic frequencies of the base frequency; since one
‘missed’ transition implies half the base frequency, and two
‘missed’ transitions imply on third the base frequency etc.,
there are peaks at these locations.

Effect of sampling function Since the frequency of the
observed stimulus is estimated by inspection of the transi-
tion period between negative and positive events, variation
in this period causes the recorded transitions to fall within
a distribution D. This distribution is quite spread at higher
frequencies, with � in the low hundreds of Hz. Sampling
with (1) is equal to a multiplication with D, giving a new
distribution of weighted transitions: W = N (1

2f ,�s) ⇥D
(see Figure 14). Since �s is chosen to be less than the stan-
dard deviation of D, �d, the sampling distribution is the
limiting factor that sets the bandwidth consumed by each

11

(a) 500Hz (b) 1 kHz (c) 2 kHz (d) 3 kHz

Figure 15: Histograms of detected frequency (from 0Hz to 3000Hz) for light source flashing at 500Hz, 1 kHz, 2 kHz, 3 kHz,
with optimised biases (blue) and default biases (red). Black bars on the x axis denote the light frequency. Note the significant
spike in detections at half of the target frequency - this occurs because a missed transition implies half of the frequency.

flashing stimulus, i.e. setting a small value for �s increases
the available bandwidth. However, setting �s too small risks
removing too much of D, which is the signal being mea-
sured. Therefore, there exists a tradeoff between available
bandwidth and measurement accuracy.

The sampling distributions should not overlap much,
since this introduces ambiguity, where the same transition
can trigger a similar response in multiple frequency filters.
This ultimately restricts the number of frequencies that can
be supported on a given bandwidth.

References

[22] Cedric Scheerlinck, Nick Barnes, and Robert Mahony.
Continuous-time intensity estimation using event cameras.
In Asian Conference on Computer Vision (ACCV), pages
308–324, Dec. 2018.

12

