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1. Introduction

In the supplementary material, we summarize the con-

tents as follows: 1) We show more qualitative results of our

proposed method on PASCAL VOC. 2) We add an algo-

rithm graph of our proposed method. 3) We perform an ab-

lation about how different thresholds affect the performance

of the iterative inference module. 4) We report results on

the more challenging COCO dataset [1] to further validate

effectiveness and generality of our method.

2. Further Qualitative Results

Object Activation Map

Refer to Fig. 1, we demonstrate more qualitative results of

our proposed method. In the main paper, we argue that

the baseline classifier not only focuses on the discrimina-

tive areas, but also generates activation on other object ar-

eas. However, the activation distribution is very uneven,

and highly discriminative areas will suppress the activation

of the other areas. We investigate this issue, and our pro-

posed method can effectively shift the activation to densely

cover larger object areas. For example, as shown in the first

column of Fig. 1, the activation on the cat head is effectively

shifted to the entire cat body.

Object Activation for Each Class.

In addition, due to page limit and for the convenience of

read, we combine object activation of all classes together

in our qualitative results. Our method can generate better

object activation on all classes. As shown in Fig. 2. We

generate dense activation covering larger objects areas on

both horse and human. Note that we can even detect very

inconspicuous objects in the background.

Qualitative Results of Activation Aware Mask Refine-

ment

Refer to Fig. 3, column 2 and column 3 show our semantic

segmentation results with/out our activation aware mask re-

finement respectively. In our method, we adaptively adopt

saliency maps in our semantic segmentation training pro-

cess to supervise the background channel. As shown, we

obtain segmentation predictions with better object bound-

aries and successfully remove false positive predictions in

the background.

3. Algorithm Graph

To further demonstrate the simplicity of our method, we

show the algorithm graph of our inferring object response

map method here. It is worth noting that iterative infer-

ence on each split can be implemented to run in parallel on

GPUs.

Algorithm 1 Inferring Object Response Maps from a Base-

line Classifier

Input: Image i, image-level label C, a fixed baseline

classifier f ;

Output: Object response map A;

Feed image I and label C into the fixed classifier f to get

baseline CAM and calculate the mass center. Split the

image i by the mass center to get 4 splits: s1, s2, s3, s4;

for i in range 4 do:

Iterative inference on si.

Size of the si: w, h

High activation areas ai = 0.

while True do:

feed the split and label C into the classifier to

obtain response map:mi = f(si, C);
New high activation region ∆ai = (mi > 0.7);
Get high activation area ai = ai +∆ai;

if ∆ai < (0.01 ∗ w ∗ h) then:

New high activation area is too small;

Break (Stop iteration);

else

Get new split image by removing the high

activation region si = si − ai ;

end if

end while

end for

Combine a1, a2, a3, a4 to obtain object activation map A

of the image i.
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Figure 1. Further sample results of initial response maps on the PASCAL VOC dataset.
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Figure 2. Our method can achieve better object activation for all

classes in images with multiple classes. We show refined object

activation for each class separately.

Image Ours (1) Ground TruthOurs (2)

Figure 3. Ours(1) and ours(2) show our semantic segmentation re-

sults with/out activation aware mask refinement loss. By adopting

activation aware mask refinement, our semantic segmentation pre-

dictions have more precise object shapes.

4. Ablation: Iterative Inference Threshold

In our method section, we propose iterative inference to

expand activation to a larger area of object. We select a

hard threshold for high activation, i.e., areas with activa-
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Figure 4. Sample results of initial response maps on COCO

dataset.Our approach helps balance object activation across dif-

ferent object parts and densely cover larger object areas.

baseline 0.4 0.5 0.6 0.7 0.8 0.9

mIoU 48.0 50.8 51.6 52.1 52.2 51.6 50.4

Table 1. Ablation study for high activation threshold for iterative

inference.

tion higher than the threshold are removed from the origi-

nal image to be used for the next iteration. In Table 1, we

quantitatively evaluate how different thresholds affect the

performance of our response map. As shown, our method

performs robustly with a consistent improvement over the

baseline, and achieves the best result with threshold equal

to 0.7. We also investigate different methods to fill the high

activation regions in the augmented image and find that us-

ing the mean value of the pixels in the original image gives

best result. As a future work, we will explore how different

types and sizes of removed areas influence the classification

prediction and object activation.

5. Results on the COCO dataset

To further validate the effectiveness and generality of our

proposed method. We test our method on the more chal-

lenging COCO dataset [1], which contains more complex

scenes and more classes (80 classes and 1 background class)

with 80k images for training and 40k images for validation.

We follow the same the process we introduced in the main

paper to obtain object response maps on COCO. Refering

to the qualitative results in Fig. 4, our method can shift ob-



Training Set (mIoU)

Baseline 29.4

Ours 29.8

Table 2. Performance comparison in mIoU(%) of the initial re-

sponse maps on the COCO dataset.

ject activation to densely cover more object areas. In Table

2, we show quantitative results of our method on COCO,

we compare the generated object response maps against the

semantic segmentation groundtruth of the COCO dataset.

Since most recent methods do not report results on COCO,

we compare with the baseline CAM [2], and show a perfor-

mance improvement, demonstrating that our method does

generalize to other datasets.

In addition, since the COCO dataset has more challeng-

ing scenes with more classes, there are more images with

many classes, and hence most objects in these images are

smaller as a fraction of image size than on VOC. We observe

a performance drop on these images and that is also the rea-

son why the object response maps’ performance on COCO

is lower than that on the PASCAL VOC dataset. Mean-

while, most current methods aim to address the partial acti-

vation issue of the CAM on PASCAL VOC only, since most

objects in the PASCAL VOC dataset are relatively large-

scale, so CAMs on these objects only focus on discrimina-

tive regions. However, it raises a interesting question that

CAMs [2] cannot perform well on the small-scale objects

and complex scenes, instead of partial activation, small ob-

jects are always overly activated. We will explore this issue

in the future work.

References

[1] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In Eur.

Conf. Comput. Vis., pages 740–755, 2014.

[2] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimina-

tive localization. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 2921–2929, 2016.


