
Supplementary Material

1. Structure of the policy network

We use a VGG-16 style architecture as our policy network. Different from the vanilla VGG-16, which
is designed for image classification, we use 1D convolution instead. The detailed architecture of the
policy network is presented in Table 1.

Table 1: The network architecture of the policy network. N is the number of filters in the CNN to be pruned.
Index Layer Type Feature map Kernel size Stride Output size Activation

0 Input Feature 1 - - Nx7 -
1 conv1_1 1D conv 64 3x3 1 Nx64 ReLu
2 conv1_2 1D conv 64 3x3 1 Nx64 ReLu
3 pool1 Pool - 2x2 2 (N/2)x64 Max
4 conv2_1 1D conv 128 3x3 1 (N/2)x128 ReLu
5 conv2_2 1D conv 128 3x3 1 (N/2)x128 ReLu
6 pool2 Pool - 2x2 2 (N/4)x128 Max
7 conv3_1 1D conv 256 3x3 1 (N/4)x256 ReLu
8 conv3_2 1D conv 256 3x3 1 (N/4)x256 ReLu
8 conv3_3 1D conv 256 3x3 1 (N/4)x256 ReLu
10 pool3 Pool - 2x2 2 (N/8)x256 Max
11 conv4_1 1D conv 512 3x3 1 (N/8)x512 ReLu
12 conv4_2 1D conv 512 3x3 1 (N/8)x512 ReLu
13 conv4_3 1D conv 512 3x3 1 (N/8)x512 ReLu
14 pool4 Pool - 2x2 2 (N/16)x512 Max
15 conv5_1 1D conv 512 3x3 1 (N/16)x512 ReLu
16 conv5_2 1D conv 512 3x3 1 (N/16)x512 ReLu
17 conv5_3 1D conv 512 3x3 1 (N/16)x512 ReLu
18 pool5 Pool - 2x2 2 (N/32)x512 Max
19 fc6_1 fc (π) - - - N Softmax
19 fc6_2 fc (v) - - - 1 Tanh

1



2. Pseudocodes of key components in our approach.

Algorithm 1 Get the improved policy π after MCTS search: getPolicyPi(si)
Input: Current configuration of the network to be pruned si, number of MCTS simulations per action
nmcts, total number of filters in the network to be pruned nf , temperature τ .
Output: πi

1: for i in range(nmcts) do
2: MCTS(si)
3: Get N(si, a) after MCTS simulations.
4: if τ = 0 then
5: bestAction = argmaxaN(si, a)
6: π[bestAction] = 1
7: else
8: π = N(si,a)

(1/τ)∑
bN(si,b)(1/τ)

return π

Algorithm 2 Get training samples from a single iteration: getTrainSamples(s0)
Input: The raw network to be pruned s0, pruning ratio γ, trainingAccBaseline b,
Output: trainSamples (si,πi, v)

1: t = 0, st = s0
2: trainSamples = []
3: while FLOPs(st)/FLOPs(s0) > γ do
4: πt = getPolicyPi(st)
5: trainSamples.append([st,πt])
6: nextAction = randomChoice(πt)
7: st+1 = pruneFilter(st,nextAction)
8: t = t+ 1
9: if trainAcc(st) > b then

10: v = 1
11: else
12: v = −1
13: trainSamples = [(x[0], x[1], v) for x in trainSamples]
14: return trainSamples

2



Algorithm 3 Learn to get the slimmed CNN with RL and MCTS
Input: The raw network to be pruned s0, neural network for pruning action selection fθ, number of
self-play simulations nsim, maximum training queue length L.
Output: The optimal slimmed CNN sp

1: totalTrainingQueue = []
2: while stopCounter < ns do
3: for i in range(nsim) do
4: Initialize MCTS
5: trainingSamples = getTrainSamples(s0)
6: if len(totalTrainingQueue) > L then
7: totalTrainingQueue.pop()
8: totalTrainingQueue += trainingSamples
9: fθ = RLTrain(totalTrainingQueue, fθ)

10: Get the slimmed network s′ by pruning s0 with fθ
11: if trainAcc(s′) > b then
12: b = trainAcc(s′)
13: sp = s′

14: stopCounter = 0
15: else
16: stopCounter += 1
17: return sp

3


