Supplementary Material

1. Structure of the policy network

We use a VGG-16 style architecture as our policy network. Different from the vanilla VGG-16, which is designed for image classification, we use 1D convolution instead. The detailed architecture of the policy network is presented in Table 1.

Index	Layer	Type	Feature map	Kernel size	Stride	Output size	Activation
0	Input	Feature	1	-	-	Nx7	-
1	conv1_1	1D conv	64	3x3	1	Nx64	ReLu
2	conv1_2	1D conv	64	3x3	1	Nx64	ReLu
3	pool1	Pool	-	2x2	2	(N/2)x64	Max
4	conv2_1	1D conv	128	3x3	1	(N/2)x128	ReLu
5	conv2_2	1D conv	128	3x3	1	(N/2)x128	ReLu
6	pool2	Pool	-	2x2	2	(N/4)x128	Max
7	conv3_1	1D conv	256	3x3	1	(N/4)x256	ReLu
8	conv3_2	1D conv	256	3x3	1	(N/4)x256	ReLu
8	conv3_3	1D conv	256	3x3	1	(N/4)x256	ReLu
10	pool3	Pool	-	2x2	2	(N/8)x256	Max
11	conv4_1	1D conv	512	3x3	1	(N/8)x512	ReLu
12	conv4_2	1D conv	512	3x3	1	(N/8)x512	ReLu
13	conv4_3	1D conv	512	3x3	1	(N/8)x512	ReLu
14	pool4	Pool	-	2x2	2	(N/16)x512	Max
15	conv5_1	1D conv	512	3x3	1	(N/16)x512	ReLu
16	conv5_2	1D conv	512	3x3	1	(N/16)x512	ReLu
17	conv5_3	1D conv	512	3x3	1	(N/16)x512	ReLu
18	pool5	Pool	-	2x2	2	(N/32)x512	Max
19	fc6_1	fc (π)	-	-	-	Ν	Softmax
19	fc6_2	fc (v)	-	-	-	1	Tanh

2. Pseudocodes of key components in our approach.

Algorithm 1 Get the improved policy π after MCTS search: getPolicyPi(s_i)

Input: Current configuration of the network to be pruned s_i , number of MCTS simulations per action n_{mcts} , total number of filters in the network to be pruned n_f , temperature τ . **Output:** π_i

1: for *i* in range(n_{mcts}) do 2: MCTS(s_i) 3: Get $N(s_i, a)$ after MCTS simulations. 4: if $\tau = 0$ then 5: bestAction = $\operatorname{argmax}_a N(s_i, a)$ 6: π [bestAction] = 1 7: else 8: $\pi = \frac{N(s_i, a)^{(1/\tau)}}{\sum_b N(s_i, b)^{(1/\tau)}}$ return π

Algorithm 2 Get training samples from a single iteration: getTrainSamples (s_0)

Input: The raw network to be pruned s_0 , pruning ratio γ , trainingAccBaseline b, **Output:** trainSamples (s_i, π_i, v)

1: $t = 0, s_t = s_0$ 2: trainSamples = [] 3: while $FLOPs(s_t)/FLOPs(s_0) > \gamma$ do $\pi_t = \text{getPolicyPi}(s_t)$ 4: trainSamples.append([s_t, π_t]) 5: nextAction = randomChoice(π_t) 6: $s_{t+1} = \text{pruneFilter}(s_t, \text{nextAction})$ 7: 8: t = t + 19: if trainAcc $(s_t) > b$ then v = 110: 11: else 12: v = -113: trainSamples = [(x[0], x[1], v) for x in trainSamples] 14: return trainSamples

Algorithm 3 Learn to get the slimmed CNN with RL and MCTS

```
Input: The raw network to be pruned s_0, neural network for pruning action selection f_{\theta}, number of self-play simulations n_{sim}, maximum training queue length L.

Output: The optimal slimmed CNN s_p

1: totalTrainingQueue = []

2: while stopCounter < n_s do

3: for i in range(n_{sim}) do
```

```
4: Initialize MCTS
```

5: trainingSamples = getTrainSamples(s_0)

```
6: if len(totalTrainingQueue) > L then
```

```
7: totalTrainingQueue.pop()
```

```
8: totalTrainingQueue += trainingSamples
```

```
9: f_{\theta} = \text{RLTrain(totalTrainingQueue, } f_{\theta})
```

```
10: Get the slimmed network s' by pruning s_0 with f_{\theta}
```

```
11: if trainAcc(s') > b then
```

```
12: b = \operatorname{trainAcc}(s')
```

```
13: s_p = s'
```

```
14: stopCounter = 0
```

```
15: else
```

```
16: stopCounter += 1
```

```
17: return s_p
```