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1. Experiments

1.1. Cross-dataset testing

We evaluate the generalization and robustness of our
model on cross-dataset testing. We follow the state-of-the-
art works that experiment on CASIA-MFSD and Replay-
Attack cross-dataset protocols. The performances are mea-
sured in HTER. The results are shown in Table 2. Our
cross-dataset’s results are not remarkable as unknown at-
tack testing results, but we obtain comparable HTER with
other state-of-the-art works from Replay-Attack to CASIA-
MFSD and CASIA-MFSD to Replay-Attack. Because we
design our method for detecting unknown attacks, we rely
on the Spoof-encoder and the Live-encoder to disentangle
the difference between real and attack data. In our option,
as a result of having different illumination, scene, and cam-
era sensors simultaneously, cross datasets’ live features may
not share. It may inhibit the disentangled feature learning
in our framework.

We fine-tune our model with few testing images to fur-
ther observe the performance of our method. It is obvious
from Table 3 that when a small number of testing images is
added to the training dataset, the model accuracy improved
obviously.

1.2. Visualization and Analysis

As shown in Figure 1, we visualize the feature em-
beddings FL and FS of our Live-encoder EL and Spoof-
encoder ES simultaneously to show that these features en-
code different information. We adopt the leave-one-out
method on the SiW-M dataset of different unknown attack
types. We randomly choose 1000 real data and 1000 un-
seen spoof-type data from the testing set. We utilize t-SNE
to convert the feature embeddings FL and FS in one fig-
ure. We can observe that live features and spoof features
scatter apart. It means that our Spoof-encoder ES without
learning correlated features, which already learned from the
Live-encoder EL.

2. Computing Cost
2.1. Comparison with other methods

We utilize floating-point operations(FLOPs) to measure
the model complexity and compare it with other disentan-
glement representation learning-based methods. In the in-
ference stage, Live-info Framework and Disentanglement
Framework are both abandoned. Therefore, the speed of our
approach can achieve 8.23±0.1(ms) on NVIDIA GeForce
GTX 1080 GPU. The comparison of computing cost of our
method with other SOTA disentanglement representation
learning methods is summarized in Table 1.

Method
inference
FLOPs # of parameters

inference time
(GTX 1080)

DST[5] 17.1G 6M -
DRL[8] 19.6G 14.4M 12.8 ±0.03ms

Ours 10G 16M 8.23±0.1ms

Table 1: Comparison of computing cost between our
method and other SOTA methods

3. Model Architecture
3.1. The first training stage

Our Live-info Framework consists of an encoder EL and
a decoder DL. The details of their network structures and
input sizes are illustrated in Table 4. Each Conv2d layer
is followed by a batch normalization layer and a Rectified
Linear Unit (ReLU) activation function. We use ∗ as the
symbol for the Conv2d layer which normalizes with the in-
stance normalization layer instead of batch normalization
layer. We use # as the symbol for the Conv2d layer without
adopting Rectified Linear Unit (ReLU) activation function.

3.2. The second training stage

The second stage contains two parts, the Disentangle-
ment Framework and Spoof cue module. Our Disentangle-
ment Framework consists of two encoders, EL and ES , a

1



Figure 1: Visualization of feature distributions of the SiW-M dataset by t-SNE[6]. we visualize the feature embeddings
FL and FS of our Live-encoder EL and Spoof-encoder ES simultaneously.

Method Train Test Train Test
CASIA-MFSD Repaly-Attack CASIA-MFSD Replay-Attack

FaceDe-S[2] 28.5% 41.1%
Auxiliary[4] 27.6% 28.4%
STASN[7] 31.3% 30.9%
BASN[3] 23.6% 29.9%
DRL[8] 22.4% 30.3%

Ours 22.6% 32.77%

Table 2: The cross-dataset testing results on CASIA-MFSD[9] and Replay-Attack[1] datasets.

decoder Dsyn, and a discriminator D . The Spoof cue mod-
ule consists of a decoder Dmap and a classifier Caux. The
details of their network structures and input sizes are illus-
trated in Table 5. Each Conv2d layer is followed by a batch
normalization layer and a Rectified Linear Unit (ReLU) ac-
tivation function. We use ∗ as the symbol for the Conv2d
layer without adopting the batch normalization layer. We
use & as the symbol for the Conv2d layer, which employs
Leaky ReLU instead of normal ReLU as the activation func-
tion. Using # as the symbol for the Conv2d layer without
adopting Rectified Linear Unit (ReLU) activation function.
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Method Train Test Train Test
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w fine-tuning (32) 8.75% 11.94%
w fine-tuning (64) 5.74% 10.0%
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Replay-Attack[1] datasets.
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Encoder Decoder

EL input : Image (3, 256, 256)
Dsyn input : Concatenated features
(1024,8,8)
DL input : Live feature (512, 8, 8)

ES input : Image (3, 256, 256) Dmap input : Spoof feature (512, 8, 8)
Layer chan./Stri./kernel Layer chan./Stri./kernel
Conv2d 64, 2, 7 Conv2d* 256, 1, 3
MaxPool2d - , 2, 3 Conv2d*# 256, 1, 3
Conv2d 64, 1, 3 Conv2d*# 256, 1, 1
Conv2d # 64, 1, 3 Conv2d 256, 1, 3
Conv2d 64, 1, 3 Conv2d # 256, 1, 3
Conv2d # 64, 1, 3 Conv2d* 128, 1, 3
Conv2d 128, 2, 3 Conv2d*# 128, 1, 3
Conv2d # 128, 1, 3 Conv2d*# 128, 1, 1
Conv2d# 128, 2, 1 Conv2d 128, 1, 3
Conv2d 128, 1, 3 Conv2d # 128, 1, 3
Conv2d # 128, 1, 3 Conv2d* 64, 1, 3
Conv2d 256,2,3 Conv2d*# 64, 1, 3
Conv2d # 256, 1, 3 Conv2d*# 64, 1, 1
Conv2d # 256, 2, 1 Conv2d 64, 1, 3
Conv2d 256,1,3 Conv2d # 64, 1, 3
Conv2d # 256, 1, 3 Conv2d* 64, 1, 3
Conv2d 512, 2, 3 Conv2d*# 64, 1, 3
Conv2d # 512, 1, 3 Conv2d*# 64, 1, 1
Conv2d # 512, 2, 1 Conv2d 64, 1, 3
Conv2d 512, 1, 3 Conv2d # 64, 1, 3
Conv2d # 512, 1, 3 Conv2d* 3, 1, 3

Conv2d*# 3, 1, 3
Conv2d*# 3, 1, 1
Conv2d 3, 1, 3
Conv2d# 3, 1, 3

Table 4: The details of the encoder and the decoder of our proposed method.



Classifier Discriminator

Caux input : Overlapped image (3, 256, 256)
Discriminator input : Image or
Reconstruction (3, 256, 256)

Layer chan./Stri./kernel Layer chan./Stri./kernel
Conv2d 64, 2, 7 Conv2d*& 256, 2, 4
MaxPool2d - , 2, 3 Conv2d & 512, 2, 4
Conv2d & 64, 1, 3 Conv2d & 1024, 2, 4
Conv2d # 64, 1, 3 Conv2d & 2048, 2, 4
Conv2d 64, 1, 3 Conv2d #* 2048, 1, 4
Conv2d # 64, 1, 3 Linear 1, - , -
Conv2d 128, 2, 3
Conv2d # 128, 1, 3
Conv2d # 128, 2, 1
Conv2d 128, 1, 3
Conv2d # 128, 1, 3
Conv2d 256, 2, 3
Conv2d # 256, 1, 3
Conv2d # 256, 2, 1
Conv2d 256, 1, 3
Conv2d # 256, 1, 3
Conv2d 512, 2, 3
Conv2d # 512, 1, 3
Conv2d # 512, 2, 1
Conv2d 512, 1, 3
Conv2d # 512, 1, 3

Table 5: The details of the classifier and the discriminator of our proposed method.


