
Disentangled Representation with Dual-stage
Feature Learning for Face Anti-spoofing

Yu-Chun Wang∗, Chien-Yi Wang†, Shang-Hong Lai∗†
∗National Tsing Hua University, †Microsoft AI R&D Center, Taiwan
yuchun@gapp.nthu.edu.tw chiwa@microsoft.com shlai@microsoft.com

1. Experiments

1.1. Cross-dataset testing

We evaluate the generalization and robustness of our
model on cross-dataset testing. We follow the state-of-the-
art works that experiment on CASIA-MFSD and Replay-
Attack cross-dataset protocols. The performances are mea-
sured in HTER. The results are shown in Table 2. Our
cross-dataset’s results are not remarkable as unknown at-
tack testing results, but we obtain comparable HTER with
other state-of-the-art works from Replay-Attack to CASIA-
MFSD and CASIA-MFSD to Replay-Attack. Because we
design our method for detecting unknown attacks, we rely
on the Spoof-encoder and the Live-encoder to disentangle
the difference between real and attack data. In our option,
as a result of having different illumination, scene, and cam-
era sensors simultaneously, cross datasets’ live features may
not share. It may inhibit the disentangled feature learning
in our framework.

We fine-tune our model with few testing images to fur-
ther observe the performance of our method. It is obvious
from Table 3 that when a small number of testing images is
added to the training dataset, the model accuracy improved
obviously.

1.2. Visualization and Analysis

As shown in Figure 1, we visualize the feature em-
beddings FL and FS of our Live-encoder EL and Spoof-
encoder ES simultaneously to show that these features en-
code different information. We adopt the leave-one-out
method on the SiW-M dataset of different unknown attack
types. We randomly choose 1000 real data and 1000 un-
seen spoof-type data from the testing set. We utilize t-SNE
to convert the feature embeddings FL and FS in one fig-
ure. We can observe that live features and spoof features
scatter apart. It means that our Spoof-encoder ES without
learning correlated features, which already learned from the
Live-encoder EL.

2. Computing Cost
2.1. Comparison with other methods

We utilize floating-point operations(FLOPs) to measure
the model complexity and compare it with other disentan-
glement representation learning-based methods. In the in-
ference stage, Live-info Framework and Disentanglement
Framework are both abandoned. Therefore, the speed of our
approach can achieve 8.23±0.1(ms) on NVIDIA GeForce
GTX 1080 GPU. The comparison of computing cost of our
method with other SOTA disentanglement representation
learning methods is summarized in Table 1.

Method
inference
FLOPs # of parameters

inference time
(GTX 1080)

DST[5] 17.1G 6M -
DRL[8] 19.6G 14.4M 12.8 ±0.03ms

Ours 10G 16M 8.23±0.1ms

Table 1: Comparison of computing cost between our
method and other SOTA methods

3. Model Architecture
3.1. The first training stage

Our Live-info Framework consists of an encoder EL and
a decoder DL. The details of their network structures and
input sizes are illustrated in Table 4. Each Conv2d layer
is followed by a batch normalization layer and a Rectified
Linear Unit (ReLU) activation function. We use ∗ as the
symbol for the Conv2d layer which normalizes with the in-
stance normalization layer instead of batch normalization
layer. We use # as the symbol for the Conv2d layer without
adopting Rectified Linear Unit (ReLU) activation function.

3.2. The second training stage

The second stage contains two parts, the Disentangle-
ment Framework and Spoof cue module. Our Disentangle-
ment Framework consists of two encoders, EL and ES , a

1



Figure 1: Visualization of feature distributions of the SiW-M dataset by t-SNE[6]. we visualize the feature embeddings
FL and FS of our Live-encoder EL and Spoof-encoder ES simultaneously.

Method Train Test Train Test
CASIA-MFSD Repaly-Attack CASIA-MFSD Replay-Attack

FaceDe-S[2] 28.5% 41.1%
Auxiliary[4] 27.6% 28.4%
STASN[7] 31.3% 30.9%
BASN[3] 23.6% 29.9%
DRL[8] 22.4% 30.3%

Ours 22.6% 32.77%

Table 2: The cross-dataset testing results on CASIA-MFSD[9] and Replay-Attack[1] datasets.

decoder Dsyn, and a discriminator D . The Spoof cue mod-
ule consists of a decoder Dmap and a classifier Caux. The
details of their network structures and input sizes are illus-
trated in Table 5. Each Conv2d layer is followed by a batch
normalization layer and a Rectified Linear Unit (ReLU) ac-
tivation function. We use ∗ as the symbol for the Conv2d
layer without adopting the batch normalization layer. We
use & as the symbol for the Conv2d layer, which employs
Leaky ReLU instead of normal ReLU as the activation func-
tion. Using # as the symbol for the Conv2d layer without
adopting Rectified Linear Unit (ReLU) activation function.

References
[1] Ivana Chingovska, André Anjos, and Sébastien Marcel. On

the effectiveness of local binary patterns in face anti-spoofing.
In 2012 BIOSIG-proceedings of the international conference
of biometrics special interest group (BIOSIG), pages 1–7.
IEEE, 2012.

[2] Amin Jourabloo, Yaojie Liu, and Xiaoming Liu. Face de-
spoofing: Anti-spoofing via noise modeling. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
pages 290–306, 2018.

[3] Taewook Kim, YongHyun Kim, Inhan Kim, and Daijin Kim.

Basn: Enriching feature representation using bipartite auxil-
iary supervisions for face anti-spoofing. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019.

[4] Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning
deep models for face anti-spoofing: Binary or auxiliary super-
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 389–398, 2018.

[5] Yaojie Liu, Joel Stehouwer, and Xiaoming Liu. On disentan-
gling spoof trace for generic face anti-spoofing. In European
Conference on Computer Vision, pages 406–422. Springer,
2020.

[6] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008.

[7] Xiao Yang, Wenhan Luo, Linchao Bao, Yuan Gao, Dihong
Gong, Shibao Zheng, Zhifeng Li, and Wei Liu. Face anti-
spoofing: Model matters, so does data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3507–3516, 2019.

[8] Ke-Yue Zhang, Taiping Yao, Jian Zhang, Ying Tai, Shouhong
Ding, Jilin Li, Feiyue Huang, Haichuan Song, and Lizhuang
Ma. Face anti-spoofing via disentangled representation learn-
ing. In European Conference on Computer Vision, pages 641–
657. Springer, 2020.



Method Train Test Train Test
CASIA-MFSD Repaly-Attack CASIA-MFSD Replay-Attack

w/o fine-tuning 22.6% 32.77%
w fine-tuning (8) 16% 18.61%

w fine-tuning (16) 15.5% 12.5%
w fine-tuning (32) 8.75% 11.94%
w fine-tuning (64) 5.74% 10.0%

Table 3: The cross-dataset testing results with a small amount of data used for model fine-tuning on CASIA-MFSD[9] and
Replay-Attack[1] datasets.

[9] Zhiwei Zhang, Junjie Yan, Sifei Liu, Zhen Lei, Dong Yi,
and Stan Z Li. A face antispoofing database with diverse at-
tacks. In 2012 5th IAPR international conference on Biomet-
rics (ICB), pages 26–31. IEEE, 2012.



Encoder Decoder

EL input : Image (3, 256, 256)
Dsyn input : Concatenated features
(1024,8,8)
DL input : Live feature (512, 8, 8)

ES input : Image (3, 256, 256) Dmap input : Spoof feature (512, 8, 8)
Layer chan./Stri./kernel Layer chan./Stri./kernel
Conv2d 64, 2, 7 Conv2d* 256, 1, 3
MaxPool2d - , 2, 3 Conv2d*# 256, 1, 3
Conv2d 64, 1, 3 Conv2d*# 256, 1, 1
Conv2d # 64, 1, 3 Conv2d 256, 1, 3
Conv2d 64, 1, 3 Conv2d # 256, 1, 3
Conv2d # 64, 1, 3 Conv2d* 128, 1, 3
Conv2d 128, 2, 3 Conv2d*# 128, 1, 3
Conv2d # 128, 1, 3 Conv2d*# 128, 1, 1
Conv2d# 128, 2, 1 Conv2d 128, 1, 3
Conv2d 128, 1, 3 Conv2d # 128, 1, 3
Conv2d # 128, 1, 3 Conv2d* 64, 1, 3
Conv2d 256,2,3 Conv2d*# 64, 1, 3
Conv2d # 256, 1, 3 Conv2d*# 64, 1, 1
Conv2d # 256, 2, 1 Conv2d 64, 1, 3
Conv2d 256,1,3 Conv2d # 64, 1, 3
Conv2d # 256, 1, 3 Conv2d* 64, 1, 3
Conv2d 512, 2, 3 Conv2d*# 64, 1, 3
Conv2d # 512, 1, 3 Conv2d*# 64, 1, 1
Conv2d # 512, 2, 1 Conv2d 64, 1, 3
Conv2d 512, 1, 3 Conv2d # 64, 1, 3
Conv2d # 512, 1, 3 Conv2d* 3, 1, 3

Conv2d*# 3, 1, 3
Conv2d*# 3, 1, 1
Conv2d 3, 1, 3
Conv2d# 3, 1, 3

Table 4: The details of the encoder and the decoder of our proposed method.



Classifier Discriminator

Caux input : Overlapped image (3, 256, 256)
Discriminator input : Image or
Reconstruction (3, 256, 256)

Layer chan./Stri./kernel Layer chan./Stri./kernel
Conv2d 64, 2, 7 Conv2d*& 256, 2, 4
MaxPool2d - , 2, 3 Conv2d & 512, 2, 4
Conv2d & 64, 1, 3 Conv2d & 1024, 2, 4
Conv2d # 64, 1, 3 Conv2d & 2048, 2, 4
Conv2d 64, 1, 3 Conv2d #* 2048, 1, 4
Conv2d # 64, 1, 3 Linear 1, - , -
Conv2d 128, 2, 3
Conv2d # 128, 1, 3
Conv2d # 128, 2, 1
Conv2d 128, 1, 3
Conv2d # 128, 1, 3
Conv2d 256, 2, 3
Conv2d # 256, 1, 3
Conv2d # 256, 2, 1
Conv2d 256, 1, 3
Conv2d # 256, 1, 3
Conv2d 512, 2, 3
Conv2d # 512, 1, 3
Conv2d # 512, 2, 1
Conv2d 512, 1, 3
Conv2d # 512, 1, 3

Table 5: The details of the classifier and the discriminator of our proposed method.


