
Supplementary Materials for “Federated Multi-Target Domain Adaptation”

Chun-Han Yao1 Boqing Gong2 Hang Qi2 Yin Cui2 Yukun Zhu2 Ming-Hsuan Yang1,2,3

1UC Merced 2Google 3Yonsei University

1. Overview
In this document, we present the implementation details, ablation studies, and additional results of our method.

2. Implementation Details
We implement our framework with TensorFlow [1] and train the models on Tesla P100 GPUs. The feature extractor and

classifiers are parametrized with deep neural networks. We apply Batch Normalization [7] after each convolutional layer and
use ReLU as the activation function of the middle layers. For local optimization on client devices, we update the model for
one epoch of the target data and upload the model parameters to the server. Detailed hyper-parameters in our experiments are
shown in Table 9.

2.1. Network architectures

Detailed network architecture for digit recognition is shown in Table 1. For image classification, we use ResNet101 [6]
for feature extraction and a linear layer as the classifier. In the semantic segmentation tasks, we adopt DeepLabv3 [2] as our
segmentation model and MobileNetv2 [14] with width multiplier α = 0.5 as the network backbone.

Table 1. Model Architecture for digit recognition (Digit-Five dataset [11]). The feature extractor consists of the four convolutional
layers and each classifier includes two fully-connected (FC) layers.

Operator Input Output Kernel size Stride Padding Activation

Feature extractor

Conv2D 322 × 3 322 × 64 5 1 2 ReLU
MaxPool 322 × 64 162 × 64 2 - - -

Conv2D 162 × 64 162 × 64 5 1 2 ReLU
MaxPool 162 × 64 82 × 64 2 - - -

Conv2D 82 × 64 82 × 64 5 1 2 ReLU
MaxPool 82 × 64 42 × 64 2 - - -

Conv2D 42 × 64 42 × 64 5 1 2 ReLU
MaxPool 42 × 64 22 × 64 2 - - -

Classifier

FC 256 64 - - - ReLU
FC 64 10 - - - -

2.2. Dataset statistics

We provide the dataset statistics in our experiments. In Tables 2 (Digit-Five [11]), 3 (Office-Caltech10 [5]), 4 (Domain-
Net [10]), 5 (GTA5 [12]-to-CrossCity [3]), and 6 (GTA5 [12]-to-BDD100K [15]), we report the number of training/testing
examples in each dataset we use. Note that we do not use the testing data from source domains since the goal is to train a
federated model that performs well on the target domains.

Table 2. Number of training/testing examples in the Digit-Five [11] experiment.

Source domain Target domains
MNIST MNIST-M SVHN Synthetic USPS

Train 25,000 25,000 25,000 25,000 7,348
Test - 9,000 9,000 9,000 1,860

Table 3. Number of examples in the Office-Caltech10 [5] experiment.

Amazon Caltech DSLR Webcam

Total 958 1,123 157 295

Table 4. Number of training/testing examples in the DomainNet [10] experiment.

Clipart Infograph Painting Quickdraw Real Sketch

Train 34,019 37,087 52,867 120,750 122,563 49,115
Test 14,818 16,114 22,892 51,750 52,764 21,271

Table 5. Number of training/testing examples in the GTA5 [12]-to-CrossCity [3] experiment.

Source domain Target domains
GTA5 Rio Rome Taipei Tokyo

Train 25,000 3,200 3,200 3,200 3,200
Test - 100 100 100 100

Table 6. Number of training/testing examples in the GTA5 [12]-to-BDD100K [15] experiment.

Source domain Target domains
GTA5 Cloudy Overcast Rainy Snowy

Train 25,000 4,535 8,143 4,855 5,307
Test - 346 1,254 215 242

2.3. Calculations of communication and computational costs

In the manuscript, we report the server-client communication cost in terms of the number of model parameters that need
to be transmitted per federated training round. For computational cost, we calculate the client-end FLOPs caused by a
feedforward or backpropagation pass of a data sample per iteration. To compare the model performance fairly, the numbers
should be multiplied by the number of training iterations/rounds until convergence. Specifically, the total communication
cost during the training process can be expressed as:

(upload cost + broadcast cost)× number of clients× number of federated rounds. (1)

The overall computational cost for a single client can be given by:

FLOPs per data sample× size of client data× number of local epochs× number of federated rounds. (2)

In our experiments, the number of clients, size of client data, and number of local epochs are fixed. The client models are
trained on local data for one epoch per federated round. We observe that our method generally has a similar convergence rate
as the competing methods (all converge within 80-100 federated rounds). Therefore, one can see the raw communication and
computational costs per example per iteration as comparable metrics.

3. Additional Results
As stated in the manuscript, we perform two other DA tasks on the Office-Caltech10 and BDD100K datasets. We show

the additional results here to demonstrate that our method performs well on diverse image classification and semantic seg-
mentation datasets. Some examples in these datasets are shown in Figure 1.

Figure 1. Examples in the Office-Caltech10, GTA5, and BDD100K datasets.

3.1. Image classification: Office-Caltech10

In the Office-Caltech10 experiment, we take turn using one domain as source and the rest as target domains. Although the
domain gaps in this dataset are not as significant as the others, the limited amount of target data still makes it challenging to
achieve a large performance gain from the baselines. We show the quantitative results in Table 7.

Table 7. Quantitative evaluations on the Office-Caltech dataset.

Method A→ C, D, W C→ A, D, W D→ A, C, W W→ A, C, D Avg

Source only 79.5 78.3 71.9 72.3 75.5
Cent-MCD [13] 81.2 81.8 74.7 75.0 78.2
Fed-oracle 80.4 81.0 74.1 74.0 77.4

Fed-DAN [9] 79.3 78.6 72.0 72.1 75.5
Fed-DANN [4] 79.7 79.2 71.9 72.4 75.8
Fed-MCD [13] 79.4 79.5 72.7 72.4 76.0
DualAdapt (ours) 80.2 80.6 73.5 74.0 77.1

3.2. Semantic segmentation: GTA5-to-BDD100K (cross-weather adaptation)

We adapt the GTA5 [12] models to street scenes taken in different weather conditions from the BDD100K dataset [15].
We use the dataset processed by Liu et al. [8], where the images with dense segmentation annotations are grouped into four
domains: cloudy, overcast, rainy, and snowy given their weather labels. Each of the four clients owns the training images from
one weather domain, and accuracy is measured by averaging over their testing images. We adopt the same model architecture
and input resolution as in the CrossCity experiment but with 19 classes. Table 8 shows quantitative results. Despite the large
inter-client domain gaps, DualAdapt achieves higher accuracy than the baselines and approaches the oracle performance.

Table 8. Quantitative evaluations on GTA5-to-BDD100K (cross-weather adaptation).

Method Cloudy Overcast Rainy Snowy Average

Source only 26.1 25.4 21.4 21.5 23.6
Cent-MCD [13] 29.4 27.8 23.3 22.7 25.8
Fed-oracle 27.9 27.3 22.8 22.6 25.2

Fed-DAN [9] 26.2 25.0 21.5 21.3 23.5
Fed-DANN [4] 26.5 25.1 21.8 21.9 23.8
Fed-MCD [13] 26.7 25.8 21.4 21.7 23.9
DualAdapt (ours) 27.1 26.8 22.7 22.3 24.7

4. Ablation Studies
4.1. Hyper-parameters

In our framework, the hyper-parameters include self-training loss weight λst, GMM feature dimension d, and number of
GMM components Nc. We report the hyper-parameters used in our experiments in Table 9 and their sensitivity analyses
in Tables 10, 11, and 12, respectively. We observe that the model performance is not sensitive to the hyper-parameters.
Increasing the values of d and Nc results in slightly higher accuracy but requires more communication overhead and client
computational cost.

Table 9. Hyper-parameters used in our experiments.

Parameter Notation Digit-Five Office-Caltech DomainNet CrossCity BDD100K

ST loss weight λst 0.1 0.1 0.1 0.1 0.1
GMM dimension d 16 64 64 64 64
GMM components Nc 20 20 345 26 38
Client learning rate - 0.01 0.01 0.001 0.001 0.001
Server learning rate - 0.001 0.001 0.001 0.001 0.001

Table 10. Analysis on the self-training (ST) loss weight λst in the Digit-Five experiment.

λst MNIST-M SVHN Synthetic USPS Average

0.01 27.7 11.1 27.4 67.9 33.6
0.1 27.7 11.9 28.0 68.9 34.1
1.0 27.3 11.6 26.7 69.3 33.7

Table 11. Analysis on the reduced feature dimension d of GMM in the Digit-Five experiment.

d MNIST-M SVHN Synthetic USPS Average

8 27.0 10.8 27.4 68.1 33.3
16 27.7 11.9 28.0 68.9 34.1
32 28.0 11.7 28.6 69.2 34.4

Table 12. Analysis on the number of GMM components Nc in the Digit-Five experiment.

Nc MNIST-M SVHN Synthetic USPS Average

10 27.5 11.8 27.7 68.2 33.8
20 27.7 11.9 28.0 68.9 34.1
40 28.0 11.9 27.6 69.4 34.2

4.2. Ablation studies on CrossCity

In addition to the ablation studies on Digit-Five, we conduct a similar evaluation on the CrossCity dataset to demonstrate
the effectiveness of each component in DualAdapt. We show the ablative results in Table 13.

Table 13. Ablation studies on the GTA5-to-CrossCity experiment. In the Fed-MCD baseline [13], each client updates the feature
extractor on both target and source data, resulting in two forward and two backward passes. Our full method requires only one forward
passes of the feature extractor on client devices, which significantly reduces the communication and computational costs.

Method Client Server Accuracy Computation Communication
(mIoU) (FLOPS) (# parameters)

Fed-MCD [13] MCD target - 27.6 32.6B 46.1M + 46.1M
DualAdapt MCD target MCD mixup 28.1 8.4B 1.5M + 46.1M
DualAdapt MCD target + ST MCD mixup 28.4 8.4B 1.5M + 46.2M
DualAdapt MCD target + ST MCD mixup + GMM 28.9 8.4B 1.6M + 46.2M

Fed-oracle MCD target + ST MCD target 29.4 8.4B 1.5M + 46.1M

4.3. Various amount of target data

In Table 14, we report the classification accuracy using different amount of target data for training. With sufficient training
data per target domain, the one-to-one adaptation approach performs competitively. However, in a practical scenario where
each client possesses limited data, the one-to-multiple setting achieves higher accuracy by exploiting data from different
domains. It justifies our FMTDA setting and demonstrates the effectiveness of DualAdapt in this data-limited scenario.

Table 14. Target accuracy using various amount of training data per domain in the Digit-Five experiment.

Method DA setting 100% (25k) 10% (2.5k) 1% (250)

Source only - 30.3 30.3 30.3
Cent-MCD [13] one-to-one 40.0 33.5 30.4
Cent-MCD [13] one-to-combined 38.2 34.0 30.8
Cent-MCD [13] one-to-multiple 39.7 35.2 31.0

Fed-DAN [9] one-to-multiple 33.1 30.9 29.8
Fed-DANN [4] one-to-multiple 33.5 31.3 30.3
Fed-MCD [13] one-to-multiple 34.2 31.7 30.4
DualAdapt (ours) one-to-multiple 37.0 34.1 30.6

4.4. Inference strategies

To investigate the effectiveness of our inference strategy, we report the accuracy of global classifier, local classifier, and
the ensemble of both. As shown in Table 15, the ensemble strategy performs the best since it allows customized model
prediction for each client while constrained by the global model.

Table 15. Target accuracy using different inference strategy in the Digit-Five experiment.

Global classifier Local classifier Ensemble

33.6 33.3 34.1

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey

Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th Symposium on Operating Systems Design
and Implementation, pages 265–283, 2016. 1

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587, 2017. 1

[3] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai, Yu-Chiang Frank Wang, and Min Sun. No more discrimination: Cross
city adaptation of road scene segmenters. In ICCV, pages 1992–2001, 2017. 1, 2

[4] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, pages 1180–1189, 2015. 3, 5
[5] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pages

2066–2073, 2012. 1, 2
[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv preprint

arXiv:1512.03385, 2015. 1
[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In

ICML, pages 448–456, 2015. 1
[8] Ziwei Liu, Zhongqi Miao, Xingang Pan, Xiaohang Zhan, Dahua Lin, Stella X Yu, and Boqing Gong. Open compound domain

adaptation. In CVPR, pages 12406–12415, 2020. 3
[9] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation networks. In ICML,

pages 2208–2217, 2017. 3, 5
[10] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain

adaptation. In ICCV, pages 1406–1415, 2019. 1, 2
[11] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial domain adaptation. arXiv preprint

arXiv:1911.02054, 2019. 1, 2
[12] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth from computer games. In ECCV,

pages 102–118, 2016. 1, 2, 3
[13] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for unsupervised domain

adaptation. In CVPR, pages 3723–3732, 2018. 3, 5
[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and

linear bottlenecks. In CVPR, pages 4510–4520, 2018. 1
[15] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell. Bdd100k:

A diverse driving dataset for heterogeneous multitask learning. In CVPR, pages 2636–2645, 2020. 1, 2, 3

