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A. Implementation details

A.1. Clothing1M

As most previous works, we used ResNet-50 architecture,
but did not utilize ImageNet pre-training. For self-supervised
pre-training, we used a SimCLR implementation1 in PyTorch
[2], trained on 8 NVIDIA 2080 Ti GPUs for 750 epochs. We
trained the network using the AdamW optimizer [1].

DivideMix For DivideMix, we used a weight decay of
0.001, and a batch size of 32. As in the case of CIFAR, the
warm-up period is five epochs. We trained the network for
120 epochs, with initial learning rate of 0.002, reduced by a
factor of 10 after 40 epochs. For each epoch, we sampled
1000 mini-batches from the training data with same amount
of samples of every class (according to noisy label). We set
λU = 0. Since a large amount of data is available, we found
that increasing value of the threshold to τ = 0.7 improves
the performance of the network.

ELR+ For ELR+, we used the default hyperparameters,
except for reduced learning rate (0.001).

A.2. WebVision

DivideMix For WebVision, we also used ResNet-50 archi-
tecture. For self-supervised pre-training, we used a SimCLR
implementation2 in PyTorch [2], trained on 8 NVIDIA 2080
Ti GPUs for 1000 epochs. We trained the network using the
AdamW optimizer [1] with a weight decay of 0.001, and
a batch size of 32. The warm-up period is one epoch. We
trained the network for 80 epochs, with initial learning rate
of 0.002, reduced by a factor of 10 after 40 epochs. We set
λU = 0.

*Equal contribution.
1https://github.com/HobbitLong/SupContrast
2https://github.com/HobbitLong/SupContrast

B. Noise detection analysis
To evaluate the quality of noise detection, in Fig. B.1

we present the ROC-AUC score of noise detection and the
effective noise rate, defined as the share of noisy samples in
the labeled part of the dataset. C2D demonstrates multiple
desired properties including a higher initial score, a much
faster rise in separability score as well as a more stable
decrease in effective noise level, and eventually a higher
overall score and lower noise level. Moreover, even though
C2D and the baseline both suffer from decrease in the ROC-
AUC score due to overfitting, C2D demonstrated a lower gap
between the peak and final scores than the baseline.
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Figure B.1: Training time ROC-AUC scores (left) and effective noise rates (right). C2D demonstrates higher initial score,
faster rise, and more stable decrease in effective noise level.
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