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The supplementary material is arranged as follows: Sec-
tion A reports the loss and matrix curves of the visual sound
source separation on single spectrogram of different tempo-
ral resolutions; Section B presents the visual sound sepa-
ration performance with V-FastSlow framework; Section C
provides additional visualization of the source separation
and localization; Section D contains additional implemen-
tation details.

A. Visual Sound Separation on Single Spectro-
gram of Different Temporal Resolutions

In Figure A, we display the loss and evaluation matrix
curves (training procedure) of the visual sound source sepa-
ration performance on single spectrogram of different tem-
poral resolutions (α ∈ {1, 2, 4, 8, 16}). We observe that
the training procedure with larger α converges faster. In ad-
dition, the smaller temporal resolution (larger α) the input
spectrogram has, the lower evaluation scores of SDR and
SIR the models obtain, which reflects the larger separation
loss. However, as is shown in Figure A, the SAR score does
not follow the same trend. SAR captures only the absence
of artifacts, hence can be high even if separation is poor.
Thus, we conclude that the SDR and SIR scores measure
the separation quality.

B. Visual Sound Separation with V-FastSlow
Network

In order to study whether the order of the slow and fast
spectrogram matters, we also assess the opposite way (V-
FastSlow), where the fast spectropgram appears first and
slow spectrogram occurs second. We experimented the V-
FastSlow network with αf = 1, αs ∈ {2, 4, 8, 16} and
reported the results in Table A. The V-FastSlow obtains
very close performance as the V-SlowFast in terms of the
evaluation metrics, number of parameters and operations.
Especially when the αs=2 and 4, the V-SlowFast achieves
slightly better performance, e.g. gain of 0.2 ∼ 0.4dB in
SDR. Thus, we mainly discuss on the case of V-SlowFast
model in the main paper.
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Figure A: Visualization of the loss and matrix curves of the
visual sound source separation on single spectrogram of dif-
ferent temporal resolutions (α ∈ {1, 2, 4, 8, 16}).

C. Additional Qualitative Results

This section provides additional qualitative visualization
of the visual sound source separation and source localiza-
tion examples.

C.1. Visual Sound Separation

Figures C, D and E present additional qualitative visual-
ization of separating mixtures of two sound sources using
V-SlowFast network from the MUSIC-21, AVE, and VGG-
Sound datasets, respectively. Figure F and G show results
of separating mixtures of three and four sound sources from
MUSIC-21.

A natural scenario example is shown in Figure B (click
to play).

C.2. Sounding Source Localization

Figures H, I and J provide additional qualitative visual-
ization of the sound source localization with the proposed



(a) Input video (b) Slow spectrogram (c) Fast spectrogram (d) Guitar (e) Saxophone

Figure B: Visual sound separation in natural scenario using V-SlowFast (2) network. Use Adobe Acrobat Reader to play.

Fast Slow SDR SIR SAR Param (M) GMACs
αf=1, U-Net (7-layer) αs=2, U-Net (7-layer) 10.26 16.92 12.87 51.69 2.45
αf=1, U-Net (7-layer) αs=4, U-Net (7-layer) 10.11 16.97 12.59 51.69 2.10
αf=1, U-Net (7-layer) αs=8, U-Net (7-layer) 9.94 16.83 12.34 51.69 1.92
αf=1, U-Net (7-layer) αs=16, U-Net (7-layer) 9.58 16.62 11.92 51.69 1.84
αf=1, U-Net (9-layer) αs=2, U-Net (5-layer) 10.11 16.50 12.73 39.74 2.65
αf=1, U-Net (9-layer) αs=4, U-Net (5-layer) 10.04 17.00 12.50 39.74 2.40
αf=1, U-Net (9-layer) αs=8, U-Net (5-layer) 9.96 17.06 12.35 39.74 2.28
αf=1, U-Net (9-layer) αs=16, U-Net (5-layer) 9.71 17.00 12.01 39.74 2.21

Table A: Source separation performance using mixtures of two sources from the MUSIC-21 dataset with V-FastSlow network
for αf=1, αs ∈ {2, 4, 8, 16}. The vision network is Res-18 + AVGA + Contrast.

V-SlowFast framework using MUSIC-21, AVE, and VGG-
Sound datasets, respectively.

D. Implementation Details
We extract video frames at 8 fps for all datasets and

sub-sample audio signal at 11KHz, 22kHz, and 22KHz for
MUSIC-21, AVE, and VGG-Sound datasets, respectively.
We randomly crop 6-second audio clip and convert the in-
put audio to F-T spectrogram using STFT with a hanning
window of size 1022 (MUSIC-21, AVE) and 1498 (VGG-
Sound), and a hop lengths of 256 (MUSIC-21), 184 (AVE)
and 375 (VGG-Sound).

A single frame (224 × 224) is forwarded to the vision
network. The vision network produces a compact repre-
sentation ev ∈ R1×CV . CV equals to 21, 28 and 310 for
MUSIC-21, AVE, and VGG-Sound datasets, respectively.
The dimension of sound features CS equals to CV , which
represents the category numbers of dataset.

α = 1 represents the full temporal resolution spectro-
gram. The slow spectrogram network and the fast spec-
trogram residual network take the low and high temporal
resolution spectrograms as input, respectively. Thus, we
consider αs > 1, and αf < αs. The ϕinv (inverse ϕ) op-
eration inverts the spectrogram into full temporal resolution
spectrogram of αs = 1 or αf = 1.

The proposed V-SlowFast model is implemented using
Pytorch framework. We adopt stochastic gradient descent

(SGD) with momentum 0.9, weight decay 1e-4, and batch
size 10. The vision network, pre-trained on ImageNet, uses
a learning rate of 1e-4, while all other of modules are trained
from scratch using a learning rate of 1e-3.
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Mixture Frame GT V-SlowFast Mixture Frame GT V-SlowFast

Figure C: Visualization of the source separation results using V-SlowFast network with mixtures of two sources from MUSIC-
21 dataset.



Mixture Frame GT V-SlowFast Mixture Frame GT V-SlowFast

Figure D: Visualization of the source separation results using V-SlowFast network with mixtures of two sources from AVE
dataset.



Mixture Frame GT V-SlowFast Mixture Frame GT V-SlowFast

Figure E: Visualization of the source separation results using V-SlowFast network with mixtures of two sources from VGG-
Sound dataset.
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Figure F: Visualization of the source separation results using V-SlowFast network with mixtures of three sources from
MUSIC-21 dataset.



Mixture Frame GT V-SlowFast Mixture Frame GT V-SlowFast

Figure G: Visualization of the source separation results using V-SlowFast network with mixtures of four sources from
MUSIC-21 dataset.



Frame Localization Frame Localization Frame Localization
Figure H: Visualization of the sound source localization using V-SlowFast network from MUSIC-21 dataset.



Frame Localization Frame Localization Frame Localization
Figure I: Visualization of the sound source localization using V-SlowFast network from AVE dataset.



Frame Localization Frame Localization Frame Localization
Figure J: Visualization of the sound source localization using V-SlowFast network from VGG-Sound dataset.


