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1. The Mixamo dataset
This Section describes additional details and statistics

about our Mixamo dataset. In Table 1, we report the num-
ber of videos and frames for each class in our dataset. For
comparison purposes, we also report the same information
for the corresponding Kinetics subset. Figures 1 and 2 pro-
vides a visual overview of the distribution of the number of
frames and the number of videos across the two datasets.

Table 1: Number of videos and frames in Mixamo and Ki-
netics

Class # videos # frames

Mixamo Kinetics Mixamo Kinetics

backflip 959 844 83,717 51,879
breakdancing 2304 829 238,464 63,613

capoeira 3456 940 326,304 75,102
clapping 1344 934 175,488 74,469

golf putting 1037 650 100,370 55,567
jogging 2304 719 143,424 60,808

punching 2016 577 108,784 52,114
salsa dancing 960 517 326,880 42,544

shouting 1248 680 148,224 52,407
side kick 2304 970 142,272 73,998

squat 2081 888 265,833 74,906
swing dancing 1304 750 599,055 64,723

texting 1296 548 432,000 48,690
throwing 1920 1816 221,760 155,869

Furthermore, the dataset presents a rich internal variabil-
ity within each action class. That is, each class is divided
into a number of sub-classes, each associated to a different
way of performing the same action. For instance, the jog-
ging class includes 8 sub-actions, which consists of unique
animations: jog forward, jogging with box, jog forward di-
agonal, injured jog, slow jog, jogging, jog in circle, jogging
stumble. Figure 3 shows the number of unique sub-classes
for each one of the original 14 categories in our synthetic
dataset.
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Figure 1: Distribution of frames per class across Mixamo
and Kinetics
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Figure 2: Distribution of videos per class across Mixamo
and Kinetics
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Figure 3: Distribution of unique actions per class



Table 2: Ablation of single-head versus multi-head on
HMDB↔UCF

Method H→U U→H
CO2A dual-head w/o LST 94.4 82.4
CO2A single-head w/o LST 91.4 82.9
CO2A (full) 95.8 87.8
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Figure 4: Sensitivity analysis of the weights of the losses
LCc

, LCv
and LSC .

2. Single-head versus dual-head ablation
For completeness, we ablate the usage of the proposed

dual-head architecture. Although it is not possible to apply
LST without the two heads, it is possible to use the other
losses in a single-head architecture. By doing so, the con-
trastive losses can directly influence the classification head,
which could lead to better feature representations. However,
in Table 2, we show that, by doing so, the contrastive losses
are detrimental for the performance of the model. Although
on UCF→HMDB the performance of a single-head model
is slightly better than the dual-head model, in the other di-
rection, HMDB→UCF, there is a large drop in accuracy.
Lastly, the single-head approach is greatly outperformed by
the full model.

3. Additional sensitivity analysis
In Figure 4, we also ablated the sensitivity of our method

to different weights considering the losses LCc and LCv .
Note that we decoupled wc into wc

c for the clip-level loss
and wv

c for the video-level loss. First, considering LCc , we
can see that our method achieves the best performance for a
value of the weight equal to 0.2. This indicates a trade-off
between a condition in which the loss has enough weight
to guide representation learning at the clip-level and a con-
dition where it dominates other losses. A very similar be-
haviour is observed for LCv

, even if the impact of this loss

on HMDB→UCF is less pronounced. Nonetheless, for the
other direction, where the domains are quite different, using
a good value for the weight of LCv results in an accuracy of
around 2% higher.

4. Augmentation details
Video-based augmentations were applied similarly to

[1]. More specifically, frame-wise augmentations are per-
formed keeping time consistency, i.e., for each video, the
parameters for the augmentations are randomised once, and
then applied to all frames equally. Colour, spatial and ran-
dom horizontal flip augmentations were applied only to
the target data. The colour augmentation parameters for
torchvision were 0.15 for the brightness, contrast and sat-
uration, and 0.05 for hue. Spatial augmentation was per-
formed by resizing the image to 256 by 256 and randomly
cropping it to be of size 224 by 224 (using the default pa-
rameters). In Mixamo→Kinetics we also applied a tempo-
ral augmentation, which simply samples the total amount
of frames, orders and then divides them into the K clips.
For source data, we applied the same augmentations only
in Mixamo→Kinetics. In settings where no augmentations
were applied, images are simply resized to 256 and are cen-
trally cropped with a size of 224. Horizontal flip is applied
with a 50% probability.

For completeness, we also ablated our method with dif-
ferent combinations of augmentations on HMDB↔UCF
and Kinetics→NEC-Drone in Figure 5. In Figure 5 (a) we
can observe that our method is not sensitive to the choice of
the augmentations and different combinations of augmenta-
tions achieve very similar performance. However, In Figure
5 (b), we can see that the combination of colour + spatial +
horizontal outperforms other configurations. Lastly, in the
more challenging setting of Kinetics→NEC-Drone (Figure
5 (c)), we can see that the choice of augmentations is more
important, with colour + horizontal and colour + spatial
+ horizontal performing very similarly. Because colour +
spatial + horizontal performs best on UCF→HMDB and
Kinetics→NEC-Drone and is only slightly inferior to the
best combination on HMDB→UCF we selected it as a good
default combination across these datasets.

5. Visualisation of the learned representations
In Figure 6 we visualise the features before the linear

classifier on the test data for HMDB↔UCF when consid-
ering a source only model and CO2A. First, considering
HMDB→UCF, our model produces more compact clusters
when considering the majority of classes. Also, it is able to
better separate some classes, e.g., golf from shoot bow and
pull-up from fencing. On UCF→HMDB the classes’ clus-
ters are more compact, but we can also observe that some
clusters became even more compact, e.g., punch and kick
ball. Likewise, it better-separated fencing and shoot bow.
On both directions, we observe that the circles and crosses
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Figure 5: Ablation of different augmentations using CO2A
on HMDB↔UCF and Kinetics→NEC-Drone.
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Figure 6: t-SNE plots of test data on HMDB↔UCF for a
source only model versus CO2A.

(source and target domains) have more overlap, indicating
that the adaptation procedure better aligns both domains.
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