Shifting More Attention to Video Salient Object Detection

Deng-Ping Fan, Wenguan Wang, Ming-Ming Cheng, Jianbing Shen; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8554-8564

Abstract


The last decade has witnessed a growing interest in video salient object detection (VSOD). However, the research community long-term lacked a well-established VSOD dataset representative of real dynamic scenes with high-quality annotations. To address this issue, we elaborately collected a visual-attention-consistent Densely Annotated VSOD (DAVSOD) dataset, which contains 226 videos with 23,938 frames that cover diverse realistic-scenes, objects, instances and motions. With corresponding real human eye-fixation data, we obtain precise ground-truths. This is the first work that explicitly emphasizes the challenge of saliency shift, i.e., the video salient object(s) may dynamically change. To further contribute the community a complete benchmark, we systematically assess 17 representative VSOD algorithms over seven existing VSOD datasets and our DAVSOD with totally 84K frames (largest-scale). Utilizing three famous metrics, we then present a comprehensive and insightful performance analysis. Furthermore, we propose a baseline model. It is equipped with a saliency shift- aware convLSTM, which can efficiently capture video saliency dynamics through learning human attention-shift behavior. Extensive experiments open up promising future directions for model development and comparison.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Fan_2019_CVPR,
author = {Fan, Deng-Ping and Wang, Wenguan and Cheng, Ming-Ming and Shen, Jianbing},
title = {Shifting More Attention to Video Salient Object Detection},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}