Disentangling Adversarial Robustness and Generalization

David Stutz, Matthias Hein, Bernt Schiele; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 6976-6987

Abstract


Obtaining deep networks that are robust against adversarial examples and generalize well is an open problem. A recent hypothesis even states that both robust and accurate models are impossible, i.e., adversarial robustness and generalization are conflicting goals. In an effort to clarify the relationship between robustness and generalization, we assume an underlying, low-dimensional data manifold and show that: 1. regular adversarial examples leave the manifold; 2. adversarial examples constrained to the manifold, i.e., on-manifold adversarial examples, exist; 3. on-manifold adversarial examples are generalization errors, and on-manifold adversarial training boosts generalization; 4. regular robustness and generalization are not necessarily contradicting goals. These assumptions imply that both robust and accurate models are possible. However, different models (architectures, training strategies etc.) can exhibit different robustness and generalization characteristics. To confirm our claims, we present extensive experiments on synthetic data (with known manifold) as well as on EMNIST, Fashion-MNIST and CelebA.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Stutz_2019_CVPR,
author = {Stutz, David and Hein, Matthias and Schiele, Bernt},
title = {Disentangling Adversarial Robustness and Generalization},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}