PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment

Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, Jiashi Feng; The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 9197-9206

Abstract


Despite the great progress made by deep CNNs in image semantic segmentation, they typically require a large number of densely-annotated images for training and are difficult to generalize to unseen object categories. Few-shot segmentation has thus been developed to learn to perform segmentation from only a few annotated examples. In this paper, we tackle the challenging few-shot segmentation problem from a metric learning perspective and present PANet, a novel prototype alignment network to better utilize the information of the support set. Our PANet learns class-specific prototype representations from a few support images within an embedding space and then performs segmentation over the query images through matching each pixel to the learned prototypes. With non-parametric metric learning, PANet offers high-quality prototypes that are representative for each semantic class and meanwhile discriminative for different classes. Moreover, PANet introduces a prototype alignment regularization between support and query. With this, PANet fully exploits knowledge from the support and provides better generalization on few-shot segmentation. Significantly, our model achieves the mIoU score of 48.1% and 55.7% on PASCAL-5i for 1-shot and 5-shot settings respectively, surpassing the state-of-the-art method by 1.8% and 8.6%.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Wang_2019_ICCV,
author = {Wang, Kaixin and Liew, Jun Hao and Zou, Yingtian and Zhou, Daquan and Feng, Jiashi},
title = {PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}