Towards In-the-wild 3D Plane Reconstruction from a Single Image

Jiachen Liu, Rui Yu, Sili Chen, Sharon X. Huang, Hengkai Guo; Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp. 27027-27037

Abstract


3D plane reconstruction from a single image is a crucial yet challenging topic in 3D computer vision. Previous state-of-the-art (SOTA) methods have focused on training their system on a single dataset from either indoor or outdoor domain, limiting their generalizability across diverse testing data. In this work, we introduce a novel framework dubbed ZeroPlane, a Transformer-based model targeting zero-shot 3D plane detection and reconstruction from a single image, over diverse domains and environments. To enable data-driving models on multiple domains, we have curated a large-scale (over 14 datasets and 560,000 images), high-resolution, densely-annotated planar benchmark from various indoor and outdoor scenes. To address the challenge of achieving desirable planar geometry on multi-dataset training, we propose to disentangle the representation of plane normal and offset, and employ an exemplar-guided, classification-then-regression paradigm to learn plane and offset respectively. Additionally, we employ advanced backbones as image encoder, and present an effective pixel-geometry-enhanced plane embedding module to further facilitate planar reconstruction. Extensive experiments across multiple zero-shot evaluation datasets have demonstrated that our approach significantly outperforms previous methods on both reconstruction accuracy and generalizability, especially over in-the-wild data. We will release all of the labeled data, code and models upon the acceptance of this paper. Our code and data are available at: https://github.com/jcliu0428/ZeroPlane.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Liu_2025_CVPR, author = {Liu, Jiachen and Yu, Rui and Chen, Sili and Huang, Sharon X. and Guo, Hengkai}, title = {Towards In-the-wild 3D Plane Reconstruction from a Single Image}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {27027-27037} }