Self-supervised Learning of Orc-Bert Augmentator for Recognizing Few-Shot Oracle Characters

Wenhui Han, Xinlin Ren, Hangyu Lin, Yanwei Fu, Xiangyang Xue; Proceedings of the Asian Conference on Computer Vision (ACCV), 2020


This paper studies the recognition of oracle character, the earliest known hieroglyphs in China. Essentially, oracle character recognition suffers from the problem of data limitation and imbalance. Recognizing the oracle characters of extremely limited samples, naturally, should be taken as the few-shot learning task. Different from the standard few-shot learning setting, our model has only access to large-scale unlabeled source Chinese characters and few labeled oracle characters. In such a setting, meta-based or metric-based few-shot methods are failed to be efficiently trained on source unlabeled data; and thus the only possible methodologies are self-supervised learning and data augmentation. Unfortunately, the conventional geometric augmentation always performs the same global transformations to all samples in pixel format, without considering the diversity of each part within a sample. Moreover, to the best of our knowledge, there is no effective self-supervised learning method for few-shot learning. To this end, this paper integrates the idea of self-supervised learning in data augmentation. And we propose a novel data augmentation approach, named Orc-Bert Augmentor pre-trained by self-supervised learning, for few-shot oracle character recognition. Specifically, Orc-Bert Augmentor leverages a self-supervised BERT model pre-trained on large unlabeled Chinese characters datasets to generate sample-wise augmented samples. Given a masked input in vector format, Orc-Bert Augmentor can recover it and then output a pixel format image as augmented data. Different mask proportion brings diverse reconstructed output. Concatenated with Gaussian noise, the model further performs point-wise displacement to improve diversity. Experimentally, we collect two large-scale datasets of oracle characters and other Chinese ancient characters for few-shot oracle character recognition and Orc-Bert Augmentor pre-training. Extensive experiments on few-shot learning demonstrate the effectiveness of our Orc-Bert Augmentor on improving the performance of various networks in the few-shot oracle character recognition.

Related Material

[pdf] [code]
@InProceedings{Han_2020_ACCV, author = {Han, Wenhui and Ren, Xinlin and Lin, Hangyu and Fu, Yanwei and Xue, Xiangyang}, title = {Self-supervised Learning of Orc-Bert Augmentator for Recognizing Few-Shot Oracle Characters}, booktitle = {Proceedings of the Asian Conference on Computer Vision (ACCV)}, month = {November}, year = {2020} }