LPSNet: A Lightweight Solution for Fast Panoptic Segmentation

Weixiang Hong, Qingpei Guo, Wei Zhang, Jingdong Chen, Wei Chu; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 16746-16754


Panoptic segmentation is a challenging task aiming to simultaneously segment objects (things) at instance level and background contents (stuff) at semantic level. Existing methods mostly utilize two-stage detection network to attain instance segmentation results, and fully convolutional network to produce semantic segmentation prediction. Post-processing or additional modules are required to handle the conflicts between the outputs from these two nets, which makes such methods suffer from low efficiency, heavy memory consumption and complicated implementation. To simplify the pipeline and decrease computation/memory cost, we propose an one-stage approach called Lightweight Panoptic Segmentation Network (LPSNet), which does not involve proposal, anchor or mask head. Instead, we predict bounding box and semantic category at each pixel upon the feature map produced by an augmented feature pyramid, and design a parameter-free head to merge the per-pixel bounding box and semantic prediction into panoptic segmentation output. Our LPSNet is not only efficient in computation and memory, but also accurate in panoptic segmentation. Comprehensive experiments on COCO, Cityscapes and Mapillary Vistas datasets demonstrate the promising effectiveness and efficiency of the proposed LPSNet.

Related Material

@InProceedings{Hong_2021_CVPR, author = {Hong, Weixiang and Guo, Qingpei and Zhang, Wei and Chen, Jingdong and Chu, Wei}, title = {LPSNet: A Lightweight Solution for Fast Panoptic Segmentation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {16746-16754} }