Interpolation-Based Semi-Supervised Learning for Object Detection

Jisoo Jeong, Vikas Verma, Minsung Hyun, Juho Kannala, Nojun Kwak; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 11602-11611


Despite the data labeling cost for the object detection tasks being substantially more than that of the classification tasks, semi-supervised learning methods for object detection have not been studied much. In this paper, we propose an Interpolation-based Semi-supervised learning method for object Detection (ISD), which considers and solves the problems caused by applying conventional Interpolation Regularization (IR) directly to object detection. We divide the output of the model into two types according to the objectness scores of both original patches that are mixed in IR. Then, we apply a separate loss suitable for each type in an unsupervised manner. The proposed losses dramatically improve the performance of semi-supervised learning as well as supervised learning. In the supervised learning setting, our method improves the baseline methods by a significant margin. In the semi-supervised learning setting, our algorithm improves the performance on a benchmark dataset (PASCAL VOC and MSCOCO) in a benchmark architecture (SSD).

Related Material

[pdf] [arXiv]
@InProceedings{Jeong_2021_CVPR, author = {Jeong, Jisoo and Verma, Vikas and Hyun, Minsung and Kannala, Juho and Kwak, Nojun}, title = {Interpolation-Based Semi-Supervised Learning for Object Detection}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {11602-11611} }