Spherical Confidence Learning for Face Recognition

Shen Li, Jianqing Xu, Xiaqing Xu, Pengcheng Shen, Shaoxin Li, Bryan Hooi; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 15629-15637


An emerging line of research has found that spherical spaces better match the underlying geometry of facial images, as evidenced by the state-of-the-art facial recognition methods which benefit empirically from spherical representations. Yet, these approaches rely on deterministic embeddings and hence suffer from the feature ambiguity dilemma, whereby ambiguous or noisy images are mapped into poorly learned regions of representation space, leading to inaccuracies. Probabilistic Face Embeddings (PFE) is the first attempt to address this dilemma. However, we theoretically and empirically identify two main failures of PFE when it is applied to spherical deterministic embeddings aforementioned. To address these issues, in this paper, we propose a novel framework for face confidence learning in spherical space. Mathematically, we extend the von Mises Fisher density to its r-radius counterpart and derive a new optimization objective in closed form. Theoretically, the proposed probabilistic framework provably allows for better interpretability, leading to principled feature comparison and pooling. Extensive experimental results on multiple challenging benchmarks confirm our hypothesis and theory, and showcase the advantages of our framework over prior probabilistic methods and spherical deterministic embeddings in various face recognition tasks.

Related Material

[pdf] [supp]
@InProceedings{Li_2021_CVPR, author = {Li, Shen and Xu, Jianqing and Xu, Xiaqing and Shen, Pengcheng and Li, Shaoxin and Hooi, Bryan}, title = {Spherical Confidence Learning for Face Recognition}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {15629-15637} }