Reciprocal Transformations for Unsupervised Video Object Segmentation

Sucheng Ren, Wenxi Liu, Yongtuo Liu, Haoxin Chen, Guoqiang Han, Shengfeng He; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 15455-15464


Unsupervised video object segmentation (UVOS) aims at segmenting the primary objects in videos without any human intervention. Due to the lack of prior knowledge about the primary objects, identifying them from videos is the major challenge of UVOS. Previous methods often regard the moving objects as primary ones and rely on optical flow to capture the motion cues in videos, but the flow information alone is insufficient to distinguish the primary objects from the background objects that move together. This is because, when the noisy motion features are combined with the appearance features, the localization of the primary objects is misguided. To address this problem, we propose a novel reciprocal transformation network to discover primary objects by correlating three key factors: the intra-frame contrast, the motion cues, and temporal coherence of recurring objects. Each corresponds to a representative type of primary object, and our reciprocal mechanism enables an organic coordination of them to effectively remove ambiguous distractions from videos. Additionally, to exclude the information of the moving background objects from motion features, our transformation module enables to reciprocally transform the appearance features to enhance the motion features, so as to focus on the moving objects with salient appearance while removing the co-moving outliers. Experiments on the public benchmarks demonstrate that our model significantly outperforms the state-of-the-art methods.

Related Material

[pdf] [supp]
@InProceedings{Ren_2021_CVPR, author = {Ren, Sucheng and Liu, Wenxi and Liu, Yongtuo and Chen, Haoxin and Han, Guoqiang and He, Shengfeng}, title = {Reciprocal Transformations for Unsupervised Video Object Segmentation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {15455-15464} }