Prior Based Human Completion

Zibo Zhao, Wen Liu, Yanyu Xu, Xianing Chen, Weixin Luo, Lei Jin, Bohui Zhu, Tong Liu, Binqiang Zhao, Shenghua Gao; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 7951-7961

Abstract


We study a very challenging task, human image completion, which tries to recover the human body part with a reasonable human shape from the corrupted region. Since each human body part is unique, it is infeasible to restore the missing part by borrowing textures from other visible regions. Thus, we propose two types of learned priors to compensate for the damaged region. One is a structure prior, it uses a human parsing map to represent the human body structure. The other is a structure-texture correlation prior. It learns a structure and a texture memory bank, which encodes the common body structures and texture patterns, respectively. With the aid of these memory banks, the model could utilize the visible pattern to query and fetch a similar structure and texture pattern to introduce additional reasonable structures and textures for the corrupted region. Besides, since multiple potential human shapes are underlying the corrupted region, we propose multi-scale structure discriminators to further restore a plausible topological structure. Experiments on various large-scale benchmarks demonstrate the effectiveness of our proposed method.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Zhao_2021_CVPR, author = {Zhao, Zibo and Liu, Wen and Xu, Yanyu and Chen, Xianing and Luo, Weixin and Jin, Lei and Zhu, Bohui and Liu, Tong and Zhao, Binqiang and Gao, Shenghua}, title = {Prior Based Human Completion}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {7951-7961} }