Rethinking Deep Face Restoration

Yang Zhao, Yu-Chuan Su, Chun-Te Chu, Yandong Li, Marius Renn, Yukun Zhu, Changyou Chen, Xuhui Jia; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 7652-7661


A model that can authentically restore a low-quality face image to a high-quality one can benefit many applications. While existing approaches for face restoration make significant progress in generating high-quality faces, they often fail to preserve facial features and cannot authentically reconstruct the faces. Because the human visual system is very sensitive to faces, even minor facial changes may alter the identity and significantly degrade the perceptual quality. In this work, we argue the problems of existing models can be traced down to the two sub-tasks of the face restoration problem, i.e. face generation and face reconstruction, and the fragile balance between them. Based on the observation, we propose a new face restoration model that improves both generation and reconstruction by learning a stochastic model and enhancing the latent features respectively. Furthermore, we adapt the number of skip connections for a better balance between the two sub-tasks. Besides the model improvement, we also introduce a new evaluation metric for measuring models' ability to preserve the identity in the restored faces. Extensive experiments demonstrate that our model achieves state-of-the-art performance on multiple face restoration benchmarks. The user study shows that our model produces higher quality faces while better preserving the identity 86.4% of the time compared with the best performing baselines.

Related Material

[pdf] [supp]
@InProceedings{Zhao_2022_CVPR, author = {Zhao, Yang and Su, Yu-Chuan and Chu, Chun-Te and Li, Yandong and Renn, Marius and Zhu, Yukun and Chen, Changyou and Jia, Xuhui}, title = {Rethinking Deep Face Restoration}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {7652-7661} }