-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Zhou_2022_CVPR, author = {Zhou, Yibo}, title = {Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {7379-7387} }
Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection
Abstract
In some scenarios, classifier requires detecting out-of-distribution samples far from its training data. With desirable characteristics, reconstruction autoencoder-based methods deal with this problem by using input reconstruction error as a metric of novelty vs. normality. We formulate the essence of such approach as a quadruplet domain translation with an intrinsic bias to only query for a proxy of conditional data uncertainty. Accordingly, an improvement direction is formalized as maximumly compressing the autoencoder's latent space while ensuring its reconstructive power for acting as a described domain translator. From it, strategies are introduced including semantic reconstruction, data certainty decomposition and normalized L2 distance to substantially improve original methods, which together establish state-of-the-art performance on various benchmarks, e.g., the FPR@95%TPR of CIFAR-100 vs. TinyImagenet-crop on Wide-ResNet is 0.2%. Importantly, our method works without any additional data, hard-to-implement structure, time-consuming pipeline, and even harming the classification accuracy of known classes.
Related Material