Context Attention Network for Skeleton Extraction

Zixuan Huang, Yunfeng Wang, Zhiwen Chen, Xin Gao, Ruili Feng, Xiaobo Li; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2022, pp. 2946-2951


Skeleton extraction is a task focused on providing a simple representation of an object by extracting the skeleton from the given binary or RGB image. In recent years many attractive works in skeleton extraction have been made. But as far as we know, there is little research on how to utilize the context information in the binary shape of objects. In this paper, we propose an attention-based model called Context Attention Network (CANet), which integrates the context extraction module in a UNet architecture and can effectively improve the network's ability to extract the skeleton pixels. Meanwhile, we also use some novel techniques including distance transform, weight focal loss to achieve good results on the given dataset. Finally, without model ensemble and with only 80% of the training images, our method achieves 0.822 F1 score during the development phase and 0.8507 F1 score during the final phase of the Pixel SkelNetOn Competition, ranking 1st place on the leaderboard.

Related Material

[pdf] [arXiv]
@InProceedings{Huang_2022_CVPR, author = {Huang, Zixuan and Wang, Yunfeng and Chen, Zhiwen and Gao, Xin and Feng, Ruili and Li, Xiaobo}, title = {Context Attention Network for Skeleton Extraction}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {June}, year = {2022}, pages = {2946-2951} }