RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods

Maciej Sypetkowski, Morteza Rezanejad, Saber Saberian, Oren Kraus, John Urbanik, James Taylor, Ben Mabey, Mason Victors, Jason Yosinski, Alborz Rezazadeh Sereshkeh, Imran Haque, Berton Earnshaw; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023, pp. 4285-4294


High-throughput screening techniques are commonly used to obtain large quantities of data in many fields of biology. It is well known that artifacts arising from variability in the technical execution of different experimental batches within such screens confound these observations, and can lead to invalid biological conclusions. It is, therefore, necessary to account for these batch effects when analyzing outcomes. In this paper, we describe RxRx1, a biological dataset designed specifically for the systematic study of batch effect correction methods. The dataset consists of 125,510 high-resolution fluorescence microscopy images of human cells under 1,138 genetic perturbations in 51 experimental batches across 4 cell types. Visual inspection of the images clearly demonstrates significant batch effects. We also propose a classification task designed to evaluate the effectiveness of experimental batch correction methods on these images and examine the performance of a number of correction methods on this task. Our goal in releasing RxRx1 is to encourage the development of effective experimental batch correction methods that generalize well to unseen experimental batches. The dataset can be downloaded at https://rxrx.ai.

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Sypetkowski_2023_CVPR, author = {Sypetkowski, Maciej and Rezanejad, Morteza and Saberian, Saber and Kraus, Oren and Urbanik, John and Taylor, James and Mabey, Ben and Victors, Mason and Yosinski, Jason and Sereshkeh, Alborz Rezazadeh and Haque, Imran and Earnshaw, Berton}, title = {RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {June}, year = {2023}, pages = {4285-4294} }