Detector-Free Structure from Motion

Xingyi He, Jiaming Sun, Yifan Wang, Sida Peng, Qixing Huang, Hujun Bao, Xiaowei Zhou; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 21594-21603

Abstract


We propose a structure-from-motion framework to recover accurate camera poses and point clouds from unordered images. Traditional SfM systems typically rely on the successful detection of repeatable keypoints across multiple views as the first step which is difficult for texture-poor scenes and poor keypoint detection may break down the whole SfM system. We propose a detector-free SfM framework to draw benefits from the recent success of detector-free matchers to avoid the early determination of keypoints while solving the multi-view inconsistency issue of detector-free matchers. Specifically our framework first reconstructs a coarse SfM model from quantized detector-free matches. Then it refines the model by a novel iterative refinement pipeline which iterates between an attention-based multi-view matching module to refine feature tracks and a geometry refinement module to improve the reconstruction accuracy. Experiments demonstrate that the proposed framework outperforms existing detector-based SfM systems on common benchmark datasets. We also collect a texture-poor SfM dataset to demonstrate the capability of our framework to reconstruct texture-poor scenes. Based on this framework we take first place in Image Matching Challenge 2023.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{He_2024_CVPR, author = {He, Xingyi and Sun, Jiaming and Wang, Yifan and Peng, Sida and Huang, Qixing and Bao, Hujun and Zhou, Xiaowei}, title = {Detector-Free Structure from Motion}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {21594-21603} }