-
[pdf]
[supp]
[bibtex]@InProceedings{Hou_2024_CVPR, author = {Hou, Xingzhong and Liu, Boxiao and Zhang, Yi and Liu, Jihao and Liu, Yu and You, Haihang}, title = {EasyDrag: Efficient Point-based Manipulation on Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {8404-8413} }
EasyDrag: Efficient Point-based Manipulation on Diffusion Models
Abstract
Generative models are gaining increasing popularity and the demand for precisely generating images is on the rise. However generating an image that perfectly aligns with users' expectations is extremely challenging. The shapes of objects the poses of animals the structures of landscapes and more may not match the user's desires and this applies to real images as well. This is where point-based image editing becomes essential. An excellent image editing method needs to meet the following criteria: user-friendly interaction high performance and good generalization capability. Due to the limitations of StyleGAN DragGAN exhibits limited robustness across diverse scenarios while DragDiffusion lacks user-friendliness due to the necessity of LoRA fine-tuning and masks. In this paper we introduce a novel interactive point-based image editing framework called EasyDrag that leverages pretrained diffusion models to achieve high-quality editing outcomes and user-friendship. Extensive experimentation demonstrates that our approach surpasses DragDiffusion in terms of both image quality and editing precision for point-based image manipulation tasks.
Related Material